--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_untranslated_punc_eval results: [] --- # angela_untranslated_punc_eval This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5952 - Precision: 0.3916 - Recall: 0.1193 - F1: 0.1829 - Accuracy: 0.8778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1532 | 1.0 | 1283 | 0.3419 | 0.3699 | 0.0649 | 0.1105 | 0.8780 | | 0.1318 | 2.0 | 2566 | 0.3842 | 0.3875 | 0.0632 | 0.1087 | 0.8785 | | 0.1097 | 3.0 | 3849 | 0.4611 | 0.4008 | 0.1028 | 0.1637 | 0.8786 | | 0.09 | 4.0 | 5132 | 0.5673 | 0.4044 | 0.1059 | 0.1679 | 0.8788 | | 0.0731 | 5.0 | 6415 | 0.5952 | 0.3916 | 0.1193 | 0.1829 | 0.8778 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3