ayyuce commited on
Commit
709522e
·
verified ·
1 Parent(s): 7d03e43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -144
README.md CHANGED
@@ -1,13 +1,22 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
 
12
  ## Model Details
13
 
@@ -15,22 +24,20 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
@@ -41,159 +48,44 @@ This is the model card of a 🤗 transformers model that has been pushed on the
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
  ### Downstream Use [optional]
47
 
48
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
  ### Out-of-Scope Use
53
 
54
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ base_model:
4
+ - facebook/sam2-hiera-tiny
5
+ pipeline_tag: image-segmentation
6
  ---
7
+ library_name: transformers
8
+ tags:
9
+ - medical-imaging
10
+ - image-segmentation
11
+ - ultrasound
12
+ - foundation-models
13
+ - sam
14
 
15
+ # Model Card for Sam2Rad
16
 
17
  <!-- Provide a quick summary of what the model is/does. -->
18
 
19
+ Sam2Rad is a prompt-learning framework that adapts Segment Anything Model (SAM/SAM2) for autonomous segmentation of bony structures in ultrasound images. It eliminates the need for manual prompts through a lightweight Prompt Predictor Network (PPN) that generates learnable prompts directly from image features. Compatible with all SAM variants, it supports three modes: autonomous operation, semi-autonomous human-in-the-loop refinement, and fully manual prompting.
20
 
21
  ## Model Details
22
 
 
24
 
25
  <!-- Provide a longer summary of what this model is. -->
26
 
27
+ - **Developed by:** Assefa Seyoum Wahd, Banafshe Felfeliyan, Yuyue Zhou, et al. (University of Alberta and McGill University)
28
+ - **Funded by [optional]:** TD Ready Grant, IC-IMPACTS, One Child Every Child, Arthritis Society, Alberta Innovates AICE Concepts
29
+ - **Shared by:** Ayyuce Demirbas
30
+ - **Model type:** Vision Transformer (ViT)-based segmentation model with prompt learning
31
+ - **Language(s) (NLP):** N/A (Image-based model)
32
+ - **License:** [More Information Needed] (Check GitHub for exact license)
33
+ - **Finetuned from model [optional]:** SAM/SAM2 (Hiera-Tiny, Hiera-Small, Hiera-Large, Hiera-Base+)
 
 
34
 
35
  ### Model Sources [optional]
36
 
37
  <!-- Provide the basic links for the model. -->
38
 
39
+ - **Repository:** [GitHub](https://github.com/aswahd/SamRadiology)
40
+ - **Paper:** "Sam2Rad: A Segmentation Model for Medical Images with Learnable Prompts"
41
  - **Demo [optional]:** [More Information Needed]
42
 
43
  ## Uses
 
48
 
49
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
 
51
+ - Automatic segmentation of bones in musculoskeletal ultrasound images (hip, wrist, shoulder)
52
+ - Integration into clinical workflows for real-time analysis or data labeling
53
 
54
  ### Downstream Use [optional]
55
 
56
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
 
58
+ - Active learning frameworks requiring rapid annotation
59
+ - Multi-class medical image segmentation with task-specific adaptations
60
 
61
  ### Out-of-Scope Use
62
 
63
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
64
 
65
+ - Non-ultrasound modalities (e.g., MRI, CT) without retraining
66
+ - Images with severe artifacts or non-anatomical structures
67
+ - Non-medical image segmentation
68
 
69
  ## Bias, Risks, and Limitations
70
 
71
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
72
 
73
+ - **Domain specificity:** Trained on musculoskeletal ultrasound; performance degrades on unseen modalities.
74
+ - **Anatomical limitations:** May struggle with atypical anatomies or surgical implants.
75
+ - **Ethical considerations:** Not validated for diagnostic use without clinician oversight.
76
 
77
  ### Recommendations
78
 
79
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
80
 
81
+ Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Validate outputs against expert annotations in clinical deployments. Retrain PPN when applying to new anatomical regions or imaging protocols.
82
 
83
  ## How to Get Started with the Model
84
 
85
  Use the code below to get started with the model.
86
 
87
+ ```python
88
+ # see GitHub for implementation https://github.com/aswahd/SamRadiology
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ from transformers import AutoModel
91
+ model = AutoModel.from_pretrained("ayyuce/sam2rad")