File size: 15,186 Bytes
fa43de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import cv2
import os
import json
import subprocess
import numpy as np
import torch
import matplotlib.pyplot as plt
from tqdm import tqdm
from PIL import Image
from transformers import (
    AutoImageProcessor,
    AutoModelForObjectDetection
)
import os
import tempfile

# -------------------- Configuration -------------------- #
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
FRAME_EXTRACTION_INTERVAL = 0.01  # Seconds between frame captures

# -------------------- Model Loading -------------------- #
try:
    print("πŸ”„ Loading visual model and processor...")
    processor_visual = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
    model_visual = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(DEVICE)
    print(f"βœ… Model loaded on {DEVICE} successfully!")
except Exception as e:
    print(f"❌ Error loading model: {e}")
    exit()

# -------------------- Metadata Extraction -------------------- #
def extract_metadata(video_path):
    """Extracts video metadata using FFmpeg"""
    try:
        cmd = ["ffprobe", "-v", "quiet", "-print_format", "json",
               "-show_format", "-show_streams", video_path]
        result = subprocess.run(cmd, capture_output=True, text=True)
        return json.loads(result.stdout)
    except Exception as e:
        print(f"❌ Metadata extraction failed: {e}")
        return {}

# -------------------- Frame Extraction -------------------- #
def extract_frames(video_path, output_folder="frames"):
    """Extracts frames from video at specified interval (supports sub-second intervals)"""
    os.makedirs(output_folder, exist_ok=True)
    
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("❌ Could not open video file")
        return 0

    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))  # Total frames in the video
    total_duration = total_frames / fps  # Total duration in seconds
    frame_count = 0

    # Use a while loop for sub-second intervals
    timestamp = 0.0
    while timestamp <= total_duration:
        cap.set(cv2.CAP_PROP_POS_MSEC, timestamp * 1000)  # Convert seconds to milliseconds
        ret, frame = cap.read()
        if ret:
            cv2.imwrite(f"{output_folder}/frame_{frame_count:04d}.jpg", frame)
            frame_count += 1
        else:
            break  # Stop if we can't read any more frames
        
        timestamp += FRAME_EXTRACTION_INTERVAL  # Increment by the interval
    
    cap.release()
    return frame_count
# -------------------- Optical Flow Calculation -------------------- #
def calculate_optical_flow(frames_folder):
    """Calculates dense optical flow between consecutive frames with validation"""
    frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
    flow_results = []
    
    # Get reference dimensions from first valid frame
    ref_height, ref_width = None, None
    for f in frame_files:
        frame = cv2.imread(os.path.join(frames_folder, f))
        if frame is not None:
            ref_height, ref_width = frame.shape[:2]
            break

    if ref_height is None:
        print("⚠ No valid frames found for optical flow calculation")
        return []

    prev_gray = None
    for i in tqdm(range(len(frame_files)), desc="Calculating optical flow"):
        current_path = os.path.join(frames_folder, frame_files[i])
        current_frame = cv2.imread(current_path)

        if current_frame is None:
            continue
            
        # Ensure consistent dimensions
        if current_frame.shape[:2] != (ref_height, ref_width):
            current_frame = cv2.resize(current_frame, (ref_width, ref_height))

        # Ensure 3-channel color format
        if len(current_frame.shape) == 2:
            current_frame = cv2.cvtColor(current_frame, cv2.COLOR_GRAY2BGR)

        current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)

        if prev_gray is not None:
            flow = cv2.calcOpticalFlowFarneback(
                prev_gray, current_gray, None, 
                pyr_scale=0.5, levels=3, iterations=3,
                winsize=15, poly_n=5, poly_sigma=1.2, flags=0
            )
            
            flow_magnitude = np.sqrt(flow[...,0]*2 + flow[...,1]*2)
            flow_results.append({
                "max_flow": float(flow_magnitude.max()),
                "mean_flow": float(flow_magnitude.mean())
            })

        prev_gray = current_gray

    # Apply temporal smoothing
    window_size = 5
    smoothed_flow = []
    for i in range(len(flow_results)):
        start = max(0, i - window_size // 2)
        end = min(len(flow_results), i + window_size // 2 + 1)
        window = flow_results[start:end]
        avg_mean = np.mean([f['mean_flow'] for f in window])
        avg_max = np.mean([f['max_flow'] for f in window])
        smoothed_flow.append({'mean_flow': avg_mean, 'max_flow': avg_max})
    
    return smoothed_flow

# -------------------- Visual Analysis -------------------- #
def detect_objects(frames_folder):
    """Processes frames through the visual detection model"""
    results = []
    frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith(".jpg")])
    
    for frame_file in tqdm(frame_files, desc="Analyzing frames"):
        try:
            image = Image.open(os.path.join(frames_folder, frame_file))
            inputs = processor_visual(images=image, return_tensors="pt").to(DEVICE)
            
            with torch.no_grad():
                outputs = model_visual(**inputs)

            # Process detections with lower threshold
            target_sizes = torch.tensor([image.size[::-1]]).to(DEVICE)
            detections = processor_visual.post_process_object_detection(
                outputs, target_sizes=target_sizes, threshold=0.4  # Lowered from 0.7
            )[0]

            scores = detections["scores"].cpu().numpy().tolist()
            max_confidence = max(scores) if scores else 0.0
            
            results.append({
                "frame": frame_file,
                "detections": len(scores),
                "max_confidence": max_confidence,
                "average_confidence": np.mean(scores) if scores else 0.0
            })
            
        except Exception as e:
            print(f"⚠ Error processing {frame_file}: {e}")
            results.append({
                "frame": frame_file,
                "detections": 0,
                "max_confidence": 0.0,
                "average_confidence": 0.0
            })
    
    return results

# -------------------- Manipulation Detection -------------------- #
def detect_manipulation(report_path="report.json"):
    """Determines video authenticity based on analysis results"""
    try:
        with open(report_path) as f:
            report = json.load(f)
            
        # Adjusted thresholds
        CONFIDENCE_THRESHOLD = 0.80  # Reduced from 0.65
        FLOW_STD_THRESHOLD = 28      # New standard deviation threshold
        SUSPICIOUS_FRAME_RATIO = 0.3  # Increased from 0.25
        
        stats = report["summary_stats"]
        
        # New metrics
        confidence_std = np.std([r["average_confidence"] for r in report["frame_analysis"]])
        flow_std = stats.get("std_optical_flow", 0)
        low_conf_frames = sum(1 for r in report["frame_analysis"] if r["average_confidence"] < 0.4)
        anomaly_ratio = low_conf_frames / len(report["frame_analysis"])

        # Multi-factor scoring
        score = 0
        if stats["average_detection_confidence"] < CONFIDENCE_THRESHOLD:
            score += 1.5
        if flow_std > FLOW_STD_THRESHOLD:
            score += 1.2
        if anomaly_ratio > SUSPICIOUS_FRAME_RATIO:
            score += 1.0
        if confidence_std > 0.2:  # High variance in confidence
            score += 0.8

        return score

    except Exception as e:
        return f"❌ Error in analysis: {str(e)}"

# -------------------- Reporting -------------------- #
# -------------------- Reporting -------------------- #
def generate_report(visual_results, flow_results, output_file="report.json"):
    """Generates comprehensive analysis report"""
    report_data = {
        "frame_analysis": visual_results,
        "motion_analysis": flow_results,
        "summary_stats": {
            "max_detection_confidence": max(r["max_confidence"] for r in visual_results),
            "average_detection_confidence": np.mean([r["average_confidence"] for r in visual_results]),
            "detection_confidence_std": np.std([r["average_confidence"] for r in visual_results]),
            "peak_optical_flow": max(r["max_flow"] for r in flow_results) if flow_results else 0,
            "average_optical_flow": np.mean([r["mean_flow"] for r in flow_results]) if flow_results else 0,
            "std_optical_flow": np.std([r["mean_flow"] for r in flow_results]) if flow_results else 0
        }
    }
    
    with open(output_file, "w") as f:
        json.dump(report_data, f, indent=2)

    # ... rest of visualization code ...
    
    return report_data  # Added return statement

# -------------------- Main Pipeline -------------------- #
def analyze_video(video_path):
    """Complete video analysis workflow"""
    print("\nπŸ“‹ Metadata Extraction:")
    metadata = extract_metadata(video_path)
    print(json.dumps(metadata.get("streams", [{}])[0], indent=2))

    print("\n🎞 Frame Extraction:")
    frame_count = extract_frames(video_path)
    print(f"βœ… Extracted {frame_count} frames at {FRAME_EXTRACTION_INTERVAL}s intervals")

    print("\nπŸ” Running object detection...")
    visual_results = detect_objects("frames")

    print("\nπŸŒ€ Calculating optical flow...")
    flow_results = calculate_optical_flow("frames")

    print("\nπŸ“Š Generating Final Report...")
    report_data = generate_report(visual_results, flow_results)

    print("\nπŸ” Authenticity Analysis:")
    score = detect_manipulation()  # This function should return a score

    print(f"\n🎯 Final Score: {score}")  # Debugging line
    return score  # βœ… Ensure this score is returned properly



# -------------------- Execution -------------------- #



#--------------------------------Streamlit---------------------------------------------#
#--------------------------------Streamlit---------------------------------------------#
import streamlit as st
import tempfile
def local_css(file_name):
    with open(file_name) as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
local_css("style.css")  # Ensure you have a separate style.css file

# Sidebar for Navigation
# Navigation
st.sidebar.title("Navigation")
page = st.sidebar.radio("", ["Home", "Analyze Video", "About"])

# Home Page
if page == "Home":
    st.markdown("<h1 class='title'>Video Manipulation Detection</h1>", unsafe_allow_html=True)
    
    # Hero Section
    col1, col2 = st.columns(2)
    with col1:
        st.markdown("""

        <div class='hero-text'>

            Detect manipulated videos with AI-powered analysis.

            Protect yourself from deepfakes and synthetic media.

        </div>

        """, unsafe_allow_html=True)
    
    with col2:
        st.video("Realistic Universe Intro_free.mp4")  # Add sample video URL
    
    # Features Section
    st.markdown("## How It Works")
    cols = st.columns(3)
    with cols[0]:
        st.image("upload-icon.png", width=100)
        st.markdown("### Upload Video")
    with cols[1]:
        st.image("analyze-icon.png", width=100)
        st.markdown("### AI Analysis")
    with cols[2]:
        st.image("result-icon.png", width=100)
        st.markdown("### Get Results")


elif page == "Analyze Video":
    uploaded_file = st.file_uploader("Upload a Video", type=["mp4", "mov"])

    if uploaded_file is not None:
        # Save uploaded file to a temporary location
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
            temp_file.write(uploaded_file.read())
            temp_video_path = temp_file.name  # βœ… Correct variable name

        st.video(temp_video_path)

        if st.button("Analyze Video"):
            with st.spinner("Analyzing..."):
                try:
                    score = analyze_video(temp_video_path)  # βœ… Ensure function exists
                    
                    # Debugging Line
                    st.write(f"Analysis Score: {score}")  
                    float(score)
                    # Display result based on score
                    if score >= 3.5 :
                        st.markdown(f"""

                        <div class='result-box suspicious'>

                            <p>This video shows major signs of manipulation</p>

                        </div>

                        """, unsafe_allow_html=True)
                    elif score >= 2.0:
                        st.markdown(f"""

                        <div class='result-box suspicious'>

                            <p>This video shows minor signs of manipulation</p>

                        </div>

                        """, unsafe_allow_html=True)
                    else:
                        st.markdown(f"""

                        <div class='result-box clean'>

                            <p>No significant manipulation detected</p>

                        </div>

                        """, unsafe_allow_html=True)
                except Exception as e:
                    st.error(f"An error occurred during analysis: {e}")

elif page == "About":  # βœ… Now this will work correctly
    st.markdown("<h1 class='title'>About Us</h1>", unsafe_allow_html=True)
    
    # Creator Profile
    col1, col2 = st.columns(2)
    with col1:
        st.image("creator.jpg", width=300, caption="Ayush Agarwal, Lead Developer")
    with col2:
        st.markdown("""

        <div class='about-text'>

            ## Ayush Agarwal ,

            Student at VIT Bhopal University ,

            AIML enthusiast 

            <br><br>

            πŸ“§ [email protected]

            <br>

            πŸ”— [LinkedIn](www.linkedin.com/in/ayush20039939)

            <br>

            πŸ™ [GitHub](https://github.com)

        </div>

        """, unsafe_allow_html=True)
    
    # Technology Stack
    st.markdown("## Our Technology")
    st.markdown("""

    <div class='tech-stack'>

        <img src='https://img.icons8.com/color/96/000000/python.png'/>

        <img src='https://img.icons8.com/color/96/000000/tensorflow.png'/>

        <img src='https://img.icons8.com/color/96/000000/opencv.png'/>

        <img src='https://raw.githubusercontent.com/github/explore/968d1eb8fb6b704c6be917f0000283face4f33ee/topics/streamlit/streamlit.png'/>

    </div>

    """, unsafe_allow_html=True)