File size: 2,506 Bytes
57a12a6
 
 
 
63c038a
 
 
 
57a12a6
 
 
 
 
 
 
 
63c038a
 
57a12a6
 
 
63c038a
57a12a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: Qwen/Qwen2.5-Math-7B-Instruct
library_name: transformers
model_name: qwen-prm-7b-soft-labels
datasets:
- axolotl-ai-co/Math-Shepherd
- axolotl-ai-co/prm800k_phase_1
- axolotl-ai-co/prm800k_phase_2
tags:
- generated_from_trainer
- axolotl
- trl
- prm
licence: license
---

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)

# Model Card for qwen-prm-7b-soft-labels

This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct).
It has been trained using [Axolotl](https://github.com/axolotl-ai-cloud/axolotl) with [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="axolotl-ai-co/qwen-prm-7b-soft-labels", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/axolotl-ai/qwen-prm-7b/runs/tqfwuxrc) 


This model was trained with PRM.

### Framework versions

- TRL: 0.13.0
- Transformers: 4.48.1
- Pytorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citations

Cite PRM as:

```bibtex
@article{uesato2022solving,
    title        = {Solving Math Word Problems With Process- and Outcome-Based Feedback},
    author       = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina},
    year         = 2022,
    journal      = {arXiv preprint arXiv:2211.14275}
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```