--- library_name: peft license: apache-2.0 base_model: unsloth/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: e578af1a-a0e4-4181-8f7a-b135ce527dcd results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/OpenHermes-2.5-Mistral-7B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d0c1ba61a3cf7b55_train_data.json ds_type: json format: custom path: /workspace/input_data/d0c1ba61a3cf7b55_train_data.json type: field_input: '' field_instruction: article field_output: highlights format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: auxyus/e578af1a-a0e4-4181-8f7a-b135ce527dcd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 4.4e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.2 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine_with_restarts max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 4 mlflow_experiment_name: /tmp/d0c1ba61a3cf7b55_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 save_total_limit: 1 saves_per_epoch: null sequence_len: 512 strict: false tf32: null tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: ff0188e6-87f3-42c6-bd6f-6b53a08c222e wandb_project: Gradients-On-2 wandb_run: your_name wandb_runid: ff0188e6-87f3-42c6-bd6f-6b53a08c222e warmup_ratio: 0.1 weight_decay: 0.01 xformers_attention: null ```

# e578af1a-a0e4-4181-8f7a-b135ce527dcd This model is a fine-tuned version of [unsloth/OpenHermes-2.5-Mistral-7B](https://huggingface.co/unsloth/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 1.9021 | | 1.2513 | 0.0020 | 150 | 1.3602 | | 1.2785 | 0.0041 | 300 | 1.3100 | | 1.3405 | 0.0061 | 450 | 1.2926 | | 1.2588 | 0.0081 | 600 | 1.2888 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1