autoprogrammer commited on
Commit
b8b0146
·
verified ·
1 Parent(s): e1f5244

回滚到逻辑正确版本

Browse files
Files changed (1) hide show
  1. modeling_densebackward_olmoe0125.py +47 -165
modeling_densebackward_olmoe0125.py CHANGED
@@ -23,10 +23,27 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
23
  router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
24
  """
25
  def forward(self, hidden_states: torch.Tensor):
26
- # determine the shape of hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  batch_size, seq_length, hidden_dim = hidden_states.shape
28
  flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
29
- total_tokens = flat_hidden.size(0)
30
 
31
  # 计算路由 logits 和全专家 routing 权重
32
  router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
@@ -40,18 +57,9 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
40
 
41
  # ---------- 稀疏计算部分 ----------
42
  # 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
43
- sparse_output = torch.zeros((total_tokens, hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
44
-
45
- # 创建一个张量存储激活专家的输出,避免使用Python字典
46
- # shape: (B*seq_len, num_experts, hidden_dim)
47
- all_expert_outputs = torch.zeros((total_tokens, self.num_experts, hidden_dim),
48
- dtype=flat_hidden.dtype, device=flat_hidden.device)
49
-
50
- # 使用张量掩码跟踪哪些专家被激活
51
- # shape: (B*seq_len, num_experts)
52
- expert_activated = torch.zeros((total_tokens, self.num_experts),
53
- dtype=torch.bool, device=flat_hidden.device)
54
-
55
  # one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
56
  expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
57
  expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
@@ -65,30 +73,29 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
65
  weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
66
  weighted_output = current_output * weight
67
  sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
68
-
69
- # 直接为激活的token分配专家输出
70
- for i in range(top_x.shape[0]):
71
- token_idx = top_x[i]
72
- all_expert_outputs[token_idx, expert_idx] = current_output[i]
73
- expert_activated[token_idx, expert_idx] = True
74
-
75
  # ---------- 稀疏计算结束 ----------
76
 
77
  # ---------- Dense估计部分 ----------
78
- # 从GPU获取必要信息,避免过多的tensor->list转换
79
- selected_experts_gpu = selected_experts # 保持在GPU上
80
-
81
- # 预分配结果张量,避免在循环中append
82
- dense_outputs = torch.zeros_like(sparse_output)
83
 
84
- # 使用向量化的estimate_dense_output函数
85
- dense_outputs = self.estimate_dense_output_batch(
86
- total_tokens=total_tokens,
87
- selected_experts=selected_experts_gpu,
88
- routing_weights=routing_weights,
89
- expert_activated=expert_activated,
90
- all_expert_outputs=all_expert_outputs
91
- )
 
 
 
 
92
  # ---------- Dense估计结束 ----------
93
 
94
  # 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
@@ -96,90 +103,6 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
96
  final_output = final_flat.view(batch_size, seq_length, hidden_dim)
97
  return final_output, router_logits
98
 
99
- def estimate_dense_output_batch(self, total_tokens, selected_experts, routing_weights,
100
- expert_activated, all_expert_outputs):
101
- """
102
- 批量估计所有token的dense输出,优化版本。
103
-
104
- 参数:
105
- total_tokens: token总数
106
- selected_experts: 每个token激活的专家索引,形状 (total_tokens, top_k)
107
- routing_weights: 路由权重,形状 (total_tokens, num_experts)
108
- expert_activated: 掩码张量,标记每个token激活了哪些专家,形状 (total_tokens, num_experts)
109
- all_expert_outputs: 专家输出,形状 (total_tokens, num_experts, hidden_dim)
110
-
111
- 返回:
112
- dense_outputs: 形状 (total_tokens, hidden_dim)
113
- """
114
- hidden_dim = all_expert_outputs.size(-1)
115
- num_experts = routing_weights.size(1)
116
- device = all_expert_outputs.device
117
-
118
- # 预分配结果张量,注意是hidden_dim而不是num_experts
119
- dense_outputs = torch.zeros((total_tokens, hidden_dim), dtype=all_expert_outputs.dtype, device=device)
120
-
121
- # 对每个token单独处理(此处仍需循环,但后续可进一步优化)
122
- for token_idx in range(total_tokens):
123
- # 对于激活的专家,直接使用输出
124
- activated_mask = expert_activated[token_idx] # (num_experts,)
125
-
126
- # 对于未激活的专家,找到估计值
127
- for expert_idx in range(num_experts):
128
- if activated_mask[expert_idx]:
129
- # 直接使用激活专家的输出
130
- expert_output = all_expert_outputs[token_idx, expert_idx]
131
- else:
132
- # 寻找可以用于估计的输出
133
- # 找出其他激活了当前专家的token
134
- tokens_with_expert = expert_activated[:, expert_idx]
135
-
136
- # 找出同时激活了当前token的某些专家和当前专家的其他token
137
- # 首先获取当前token激活的专家
138
- current_activated = selected_experts[token_idx]
139
-
140
- # 在其他token中寻找同时激活了current_activated中专家和expert_idx的token
141
- valid_tokens = torch.zeros(total_tokens, dtype=torch.bool, device=device)
142
-
143
- # 对于每个其他token,检查它是否同时激活了当前token的某个专家和当前专家
144
- for other_token in range(total_tokens):
145
- if other_token == token_idx:
146
- continue
147
-
148
- # 检查其他token是否激活了当前专家
149
- if expert_activated[other_token, expert_idx]:
150
- # 检查是否有共同激活的专家
151
- other_experts = selected_experts[other_token]
152
- common = torch.any(torch.isin(other_experts, current_activated))
153
- if common:
154
- valid_tokens[other_token] = True
155
-
156
- # 如果找到了有效token
157
- if valid_tokens.any():
158
- # 获取有效token对当前专家的输出
159
- valid_outputs = all_expert_outputs[valid_tokens, expert_idx]
160
- # 只计算非零值的平均值
161
- mask = (valid_outputs.sum(dim=-1) != 0).to(valid_outputs.dtype).unsqueeze(-1)
162
- if mask.sum() > 0:
163
- expert_output = (valid_outputs * mask).sum(dim=0) / mask.sum()
164
- else:
165
- expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
166
- else:
167
- # 如果没有找到有效token,使用所有激活了当前专家的token的输出
168
- if tokens_with_expert.any():
169
- all_valid_outputs = all_expert_outputs[tokens_with_expert, expert_idx]
170
- mask = (all_valid_outputs.sum(dim=-1) != 0).to(all_valid_outputs.dtype).unsqueeze(-1)
171
- if mask.sum() > 0:
172
- expert_output = (all_valid_outputs * mask).sum(dim=0) / mask.sum()
173
- else:
174
- expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
175
- else:
176
- expert_output = torch.zeros(hidden_dim, dtype=all_expert_outputs.dtype, device=device)
177
-
178
- # 根据routing权重加权
179
- dense_outputs[token_idx] += routing_weights[token_idx, expert_idx] * expert_output
180
-
181
- return dense_outputs
182
-
183
  def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
184
  """
185
  对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
@@ -207,21 +130,9 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
207
  indices.append(idx)
208
  if indices:
209
  selected_outputs = all_expert_outputs[indices, i, :] # (n, hidden_dim)
210
- # 只计算非零值的平均值
211
- mask = (selected_outputs.sum(dim=-1) != 0).to(selected_outputs.dtype).unsqueeze(-1)
212
- if mask.sum() > 0:
213
- estimated = (selected_outputs * mask).sum(dim=0) / mask.sum()
214
- else:
215
- # 如果全是零,返回零向量
216
- estimated = torch.zeros_like(selected_outputs[0])
217
  else:
218
- all_outputs = all_expert_outputs[:, i, :]
219
- mask = (all_outputs.sum(dim=-1) != 0).to(all_outputs.dtype).unsqueeze(-1)
220
- if mask.sum() > 0:
221
- estimated = (all_outputs * mask).sum(dim=0) / mask.sum()
222
- else:
223
- # 如果全是零,返回零向量
224
- estimated = torch.zeros_like(all_outputs[0])
225
  dense_parts[i] = estimated
226
  # 按 gate_prob 加权求和各专家输出
227
  estimated_dense = 0
@@ -241,49 +152,20 @@ class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
241
  base_model_prefix = "olmoe"
242
 
243
  def __init__(self, config):
244
- # 首先调用父类初始化方法
245
  super().__init__(config)
246
-
247
- # 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
248
- pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
249
-
250
- # 复制预训练模型的状态到当前模型
251
- self.config = pretrained_model.config
252
- self.model = pretrained_model.model
253
- self.vocab_size = pretrained_model.vocab_size
254
- self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
255
- self.num_experts = pretrained_model.num_experts
256
- self.lm_head = pretrained_model.lm_head
257
-
258
  # 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
259
  # 此处假设官方模型在 self.model.layers 中组织 decoder 层,
260
  # 且每层中 mlp 模块包含属性 sparse_moe_block。
261
  for layer in self.model.layers:
262
- if hasattr(layer.mlp, "gate"):
263
- print("111")
264
- orig_block = layer.mlp
265
  # 通过直接复制原版属性创建新的块
266
  new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
267
  # 然后手动复制需要共享的属性:
268
  new_block.gate = orig_block.gate
269
  new_block.experts = orig_block.experts
 
270
  new_block.num_experts = orig_block.num_experts
271
  new_block.top_k = orig_block.top_k
272
  new_block.norm_topk_prob = orig_block.norm_topk_prob
273
- layer.mlp = new_block
274
- print(type(layer.mlp))
275
-
276
- def main():
277
- config = DenseBackwardOLMoEConfig( # 官方模型参数
278
- model_marker="DenseBackward_olmoe_marker",
279
- )
280
- # 创建自定义模��实例
281
- model = DenseBackwardOLMoEForCausalLM(config)
282
- print(type(model))
283
- print(type(model.model))
284
- print(type(model.model.layers[0]))
285
- print(type(model.model.layers[0].mlp))
286
- print(type(model.model.layers[0].mlp.experts))
287
-
288
- if __name__ == "__main__":
289
- main()
 
23
  router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
24
  """
25
  def forward(self, hidden_states: torch.Tensor):
26
+ """
27
+ 输入:
28
+ hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
29
+ 输出:
30
+ final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
31
+ router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
32
+ 实现思路:
33
+ 1. 将输入展平为 (B*seq_len, hidden_dim),通过 self.gate 得到 router_logits,
34
+ 并计算全专家的 routing 权重(softmax 后)。
35
+ 2. 对 routing 权重取 top-k,得到 routing_weights_topk 与 selected_experts;
36
+ 如配置要求,归一化 top-k 概率。
37
+ 3. 稀疏计算部分:仅计算每个 token 对于 top-k 专家的输出,
38
+ 并累加得到 sparse_output(保留原版计算流程,同时记录激活专家的实际输出)。
39
+ 4. Dense 估计部分:先计算所有专家对所有 token 的输出(all_expert_outputs),
40
+ 再逐 token 调用 estimate_dense_output 得到 dense 输出(dense_estimated)。
41
+ 5. 使用直通梯度技巧:前向输出用 sparse_output,但梯度来源于 dense_estimated。
42
+ 6. 最后 reshape 为 (batch_size, sequence_length, hidden_dim) 并返回 final_output 及 router_logits.
43
+ """
44
+ #determine the shape of hidden_states
45
  batch_size, seq_length, hidden_dim = hidden_states.shape
46
  flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
 
47
 
48
  # 计算路由 logits 和全专家 routing 权重
49
  router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
 
57
 
58
  # ---------- 稀疏计算部分 ----------
59
  # 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
60
+ sparse_output = torch.zeros((flat_hidden.size(0), hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
61
+ # 用于记录每个 token 对激活专家的实际输出
62
+ activated_outputs = [{} for _ in range(flat_hidden.size(0))]
 
 
 
 
 
 
 
 
 
63
  # one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
64
  expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
65
  expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
 
73
  weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
74
  weighted_output = current_output * weight
75
  sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
76
+ # 保存当前 token 对该专家的实际输出
77
+ for pos, token_idx in enumerate(top_x.tolist()):
78
+ activated_outputs[token_idx][expert_idx] = current_output[pos]
 
 
 
 
79
  # ---------- 稀疏计算结束 ----------
80
 
81
  # ---------- Dense估计部分 ----------
82
+ # 计算所有专家对所有 token 的 dense 输出,shape: (B*seq_len, num_experts, hidden_dim)
83
+ all_expert_outputs = torch.stack([expert(flat_hidden) for expert in self.experts], dim=1)
84
+ # 将 selected_experts 转换为 list,每个 token 的激活专家列表
85
+ all_routing = selected_experts.tolist() # 长度为 (B*seq_len)
 
86
 
87
+ dense_outputs = []
88
+ for i in range(flat_hidden.size(0)):
89
+ dense_est = self.estimate_dense_output(
90
+ token_idx=i,
91
+ activated=all_routing[i], # 当前 token 激活的专家列表,例如 [a, b]
92
+ gate_prob=routing_weights[i], # 当前 token 的完整 routing 权重 (num_experts,)
93
+ activated_outputs=activated_outputs[i], # 当前 token 对激活专家的实际输出
94
+ all_routing=all_routing, # 全 batch 每个 token 的激活专家列表(list of lists)
95
+ all_expert_outputs=all_expert_outputs # (B*seq_len, num_experts, hidden_dim)
96
+ )
97
+ dense_outputs.append(dense_est.unsqueeze(0))
98
+ dense_outputs = torch.cat(dense_outputs, dim=0) # (B*seq_len, hidden_dim)
99
  # ---------- Dense估计结束 ----------
100
 
101
  # 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
 
103
  final_output = final_flat.view(batch_size, seq_length, hidden_dim)
104
  return final_output, router_logits
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
107
  """
108
  对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
 
130
  indices.append(idx)
131
  if indices:
132
  selected_outputs = all_expert_outputs[indices, i, :] # (n, hidden_dim)
133
+ estimated = selected_outputs.mean(dim=0)
 
 
 
 
 
 
134
  else:
135
+ estimated = all_expert_outputs[:, i, :].mean(dim=0)
 
 
 
 
 
 
136
  dense_parts[i] = estimated
137
  # 按 gate_prob 加权求和各专家输出
138
  estimated_dense = 0
 
152
  base_model_prefix = "olmoe"
153
 
154
  def __init__(self, config):
 
155
  super().__init__(config)
 
 
 
 
 
 
 
 
 
 
 
 
156
  # 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
157
  # 此处假设官方模型在 self.model.layers 中组织 decoder 层,
158
  # 且每层中 mlp 模块包含属性 sparse_moe_block。
159
  for layer in self.model.layers:
160
+ if hasattr(layer.mlp, "sparse_moe_block"):
161
+ orig_block = layer.mlp.sparse_moe_block
 
162
  # 通过直接复制原版属性创建新的块
163
  new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
164
  # 然后手动复制需要共享的属性:
165
  new_block.gate = orig_block.gate
166
  new_block.experts = orig_block.experts
167
+ new_block.router = orig_block.router
168
  new_block.num_experts = orig_block.num_experts
169
  new_block.top_k = orig_block.top_k
170
  new_block.norm_topk_prob = orig_block.norm_topk_prob
171
+ layer.mlp.sparse_moe_block = new_block