autoprogrammer commited on
Commit
5867a45
·
verified ·
1 Parent(s): 22c8aa2

Update modeling_densebackward_olmoe0125.py

Browse files
Files changed (1) hide show
  1. modeling_densebackward_olmoe0125.py +17 -5
modeling_densebackward_olmoe0125.py CHANGED
@@ -25,32 +25,41 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
25
  """
26
  def forward(self, hidden_states: torch.Tensor):
27
  batch_size, seq_length, hidden_dim = hidden_states.shape
 
 
 
 
28
  flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
29
  N_tokens = flat_hidden.size(0)
30
 
31
  # 计算路由逻辑
32
  router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
33
- routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
 
 
34
 
35
  # 选择top-k专家
36
  routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
37
  if self.norm_topk_prob:
38
  routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
39
- routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
40
-
 
41
  # ---------- 真实计算所有专家输出(密集计算)----------
42
  all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
43
- dtype=flat_hidden.dtype, device=flat_hidden.device)
44
 
45
  for expert_idx in range(self.num_experts):
46
  expert_layer = self.experts[expert_idx]
47
  # 对所有token都计算当前专家的输出
48
  expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
 
 
49
  all_expert_outputs[:, expert_idx, :] = expert_output
50
 
51
  # ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
52
  # 创建索引张量,第一维是token索引,第二维是专家索引
53
- token_indices = torch.arange(N_tokens, device=flat_hidden.device).unsqueeze(1).expand(-1, self.top_k)
54
  batch_indices = token_indices.reshape(-1)
55
  expert_indices = selected_experts.reshape(-1)
56
 
@@ -59,6 +68,7 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
59
 
60
  # 扩展权重以便批量相乘
61
  expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
 
62
 
63
  # 权重乘以专家输出并求和
64
  sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
@@ -66,12 +76,14 @@ class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
66
  # ---------- 密集计算聚合(用于反向传播)----------
67
  # 使用所有专家的输出和路由权重计算密集输出
68
  routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
 
69
  dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
70
 
71
  # ---------- 组合稀疏前向和密集反向 ----------
72
  # sparse_output.detach()保留稀疏前向计算图
73
  # (dense_outputs - dense_outputs.detach())只保留密集反向梯度
74
  final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
 
75
  final_output = final_flat.view(batch_size, seq_length, hidden_dim)
76
 
77
  return final_output, router_logits
 
25
  """
26
  def forward(self, hidden_states: torch.Tensor):
27
  batch_size, seq_length, hidden_dim = hidden_states.shape
28
+ # 记录输入张量的数据类型,确保所有计算保持一致
29
+ dtype = hidden_states.dtype
30
+ device = hidden_states.device
31
+
32
  flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
33
  N_tokens = flat_hidden.size(0)
34
 
35
  # 计算路由逻辑
36
  router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
37
+ # 确保router_logits和flat_hidden数据类型一致
38
+ router_logits = router_logits.to(dtype=dtype)
39
+ routing_weights = F.softmax(router_logits, dim=1, dtype=dtype) # (B*seq_len, num_experts)
40
 
41
  # 选择top-k专家
42
  routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
43
  if self.norm_topk_prob:
44
  routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
45
+ # 确保归一化后类型一致
46
+ routing_weights_topk = routing_weights_topk.to(dtype=dtype)
47
+
48
  # ---------- 真实计算所有专家输出(密集计算)----------
49
  all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
50
+ dtype=dtype, device=device)
51
 
52
  for expert_idx in range(self.num_experts):
53
  expert_layer = self.experts[expert_idx]
54
  # 对所有token都计算当前专家的输出
55
  expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
56
+ # 确保专家输出与预期类型一致
57
+ expert_output = expert_output.to(dtype=dtype)
58
  all_expert_outputs[:, expert_idx, :] = expert_output
59
 
60
  # ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
61
  # 创建索引张量,第一维是token索引,第二维是专家索引
62
+ token_indices = torch.arange(N_tokens, device=device).unsqueeze(1).expand(-1, self.top_k)
63
  batch_indices = token_indices.reshape(-1)
64
  expert_indices = selected_experts.reshape(-1)
65
 
 
68
 
69
  # 扩展权重以便批量相乘
70
  expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
71
+ expanded_weights = expanded_weights.to(dtype=dtype)
72
 
73
  # 权重乘以专家输出并求和
74
  sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
 
76
  # ---------- 密集计算聚合(用于反向传播)----------
77
  # 使用所有专家的输出和路由权重计算密集输出
78
  routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
79
+ routing_weights_expanded = routing_weights_expanded.to(dtype=dtype)
80
  dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
81
 
82
  # ---------- 组合稀疏前向和密集反向 ----------
83
  # sparse_output.detach()保留稀疏前向计算图
84
  # (dense_outputs - dense_outputs.detach())只保留密集反向梯度
85
  final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
86
+ final_flat = final_flat.to(dtype=dtype) # 确保最终输出类型一致
87
  final_output = final_flat.view(batch_size, seq_length, hidden_dim)
88
 
89
  return final_output, router_logits