olmoe_densebackward0125_v1 / modeling_densebackward_olmoe0125_v1.py
airevo2
自定义文件
59e22b7
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from .configuration_densebackward_olmoe0125_v1 import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
"""
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
前向输出依旧保持与官方相同(即稀疏计算结果),
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
"""
def forward(self, hidden_states: torch.Tensor):
batch_size, seq_length, hidden_dim = hidden_states.shape
# 记录输入张量的数据类型,确保所有计算保持一致
dtype = hidden_states.dtype
device = hidden_states.device
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
N_tokens = flat_hidden.size(0)
# 计算路由逻辑
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
# 确保router_logits和flat_hidden数据类型一致
router_logits = router_logits.to(dtype=dtype)
routing_weights = F.softmax(router_logits, dim=1, dtype=dtype) # (B*seq_len, num_experts)
# 选择top-k专家
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
# 确保归一化后类型一致
routing_weights_topk = routing_weights_topk.to(dtype=dtype)
# ---------- 真实计算所有专家输出(密集计算)----------
all_expert_outputs = torch.zeros((N_tokens, self.num_experts, hidden_dim),
dtype=dtype, device=device)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
# 对所有token都计算当前专家的输出
expert_output = expert_layer(flat_hidden) # (N_tokens, hidden_dim)
# 确保专家输出与预期类型一致
expert_output = expert_output.to(dtype=dtype)
all_expert_outputs[:, expert_idx, :] = expert_output
# ---------- 提取激活专家输出(稀疏前向)- 使用张量批处理 ----------
# 创建索引张量,第一维是token索引,第二维是专家索引
token_indices = torch.arange(N_tokens, device=device).unsqueeze(1).expand(-1, self.top_k)
batch_indices = token_indices.reshape(-1)
expert_indices = selected_experts.reshape(-1)
# 批量提取激活专家的输出
selected_outputs = all_expert_outputs[batch_indices, expert_indices].view(N_tokens, self.top_k, hidden_dim)
# 扩展权重以便批量相乘
expanded_weights = routing_weights_topk.unsqueeze(-1) # (N_tokens, top_k, 1)
expanded_weights = expanded_weights.to(dtype=dtype)
# 权重乘以专家输出并求和
sparse_output = (selected_outputs * expanded_weights).sum(dim=1) # (N_tokens, hidden_dim)
# ---------- 密集计算聚合(用于反向传播)----------
# 使用所有专家的输出和路由权重计算密集输出
routing_weights_expanded = routing_weights.unsqueeze(-1) # (N_tokens, num_experts, 1)
routing_weights_expanded = routing_weights_expanded.to(dtype=dtype)
print(expanded_weights.shape)
print("sparse",expanded_weights)
print(routing_weights_expanded.shape)
print("dense",routing_weights_expanded)
dense_outputs = (all_expert_outputs * routing_weights_expanded).sum(dim=1) # (N_tokens, hidden_dim)
# ---------- 组合稀疏前向和密集反向 ----------
# sparse_output.detach()保留稀疏前向计算图
# (dense_outputs - dense_outputs.detach())只保留密集反向梯度
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
final_flat = final_flat.to(dtype=dtype) # 确保最终输出类型一致
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125")
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
# 释放预训练模型内存
del pretrained_model
import gc
gc.collect()
torch.cuda.empty_cache()
print("原始预训练模型已释放")
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main()