Upload folder using huggingface_hub
Browse files- README.md +9 -195
- __init__.py +9 -0
- config.json +2 -2
- configuration_custom.py +27 -0
- modeling_custom.py +207 -0
README.md
CHANGED
@@ -1,199 +1,13 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
# DenseBackwardOLMoE
|
|
|
|
|
|
|
2 |
|
3 |
+
自定义的OLMoE模型,使用DenseBackwardOlmoeSparseMoeBlock替换原版的MoE模块,实现dense backward功能。
|
4 |
|
5 |
+
## 用法
|
6 |
|
7 |
+
```python
|
8 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
9 |
|
10 |
+
# 使用trust_remote_code=True加载模型
|
11 |
+
config = AutoConfig.from_pretrained("autoprogrammer/olmoe_densebackward", trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained("autoprogrammer/olmoe_densebackward", config=config, trust_remote_code=True)
|
13 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 导出自定义配置和模型类
|
2 |
+
from .configuration_custom import DenseBackwardOLMoEConfig
|
3 |
+
from .modeling_custom import DenseBackwardOLMoEForCausalLM, DenseBackwardOlmoeSparseMoeBlock
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"DenseBackwardOLMoEConfig",
|
7 |
+
"DenseBackwardOLMoEForCausalLM",
|
8 |
+
"DenseBackwardOlmoeSparseMoeBlock"
|
9 |
+
]
|
config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "allenai/OLMoE-1B-7B-0924",
|
3 |
"architectures": [
|
4 |
+
"DenseBackwardOLMoEForCausalLM"
|
5 |
],
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
configuration_custom.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# my_custom_olmoe/configuration_custom.py
|
2 |
+
|
3 |
+
# 注意:根据你的 transformers 版本,导入官方 OLMoE 配置的路径可能需要调整
|
4 |
+
from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
5 |
+
|
6 |
+
class DenseBackwardOLMoEConfig(OlmoeConfig):
|
7 |
+
model_type = "DenseBackward_olmoe" # 这里覆盖 model_type 字段,便于后续识别
|
8 |
+
|
9 |
+
# 添加auto_map用于支持AutoClass
|
10 |
+
auto_map = {
|
11 |
+
"AutoConfig": "configuration_custom.DenseBackwardOLMoEConfig",
|
12 |
+
"AutoModelForCausalLM": "modeling_custom.DenseBackwardOLMoEForCausalLM"
|
13 |
+
}
|
14 |
+
|
15 |
+
def __init__(self, model_marker="DenseBackward_olmoe_marker", **kwargs):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
self.model_marker = model_marker
|
18 |
+
self.intermediate_size= 1024
|
19 |
+
self.torch_dtype= "bfloat16"
|
20 |
+
#test
|
21 |
+
def main():
|
22 |
+
config = DenseBackwardOLMoEConfig(model_marker="DenseBackward_olmoe_marker",
|
23 |
+
torch_dtype="bfloat16")
|
24 |
+
print(config)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|
modeling_custom.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# my_custom_olmoe/modeling_custom.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
|
8 |
+
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
|
9 |
+
from configuration_custom import DenseBackwardOLMoEConfig
|
10 |
+
|
11 |
+
|
12 |
+
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
|
13 |
+
"""
|
14 |
+
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
|
15 |
+
前向输出依旧保持与官方相同(即稀疏计算结果),
|
16 |
+
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
|
17 |
+
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
|
18 |
+
|
19 |
+
输入:
|
20 |
+
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
21 |
+
输出:
|
22 |
+
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
23 |
+
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
|
24 |
+
"""
|
25 |
+
def forward(self, hidden_states: torch.Tensor):
|
26 |
+
"""
|
27 |
+
输入:
|
28 |
+
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
29 |
+
输出:
|
30 |
+
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
|
31 |
+
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
|
32 |
+
实现思路:
|
33 |
+
1. 将输入展平为 (B*seq_len, hidden_dim),通过 self.gate 得到 router_logits,
|
34 |
+
并计算全专家的 routing 权重(softmax 后)。
|
35 |
+
2. 对 routing 权重取 top-k,得到 routing_weights_topk 与 selected_experts;
|
36 |
+
如配置要求,归一化 top-k 概率。
|
37 |
+
3. 稀疏计算部分:仅计算每个 token 对于 top-k 专家的输出,
|
38 |
+
并累加得到 sparse_output(保留原版计算流程,同时记录激活专家的实际输出)。
|
39 |
+
4. Dense 估计部分:先计算所有专家对所有 token 的输出(all_expert_outputs),
|
40 |
+
再逐 token 调用 estimate_dense_output 得到 dense 输出(dense_estimated)。
|
41 |
+
5. 使用直通梯度技巧:前向输出用 sparse_output,但梯度来源于 dense_estimated。
|
42 |
+
6. 最后 reshape 为 (batch_size, sequence_length, hidden_dim) 并返回 final_output 及 router_logits.
|
43 |
+
"""
|
44 |
+
#determine the shape of hidden_states
|
45 |
+
batch_size, seq_length, hidden_dim = hidden_states.shape
|
46 |
+
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
|
47 |
+
|
48 |
+
# 计算路由 logits 和全专家 routing 权重
|
49 |
+
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
|
50 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
|
51 |
+
|
52 |
+
# Top-k 选择
|
53 |
+
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
54 |
+
if self.norm_topk_prob:
|
55 |
+
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
|
56 |
+
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
|
57 |
+
|
58 |
+
# ---------- 稀疏计算部分 ----------
|
59 |
+
# 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
|
60 |
+
sparse_output = torch.zeros((flat_hidden.size(0), hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
|
61 |
+
# 用于记录每个 token 对激活专家的实际输出
|
62 |
+
activated_outputs = [{} for _ in range(flat_hidden.size(0))]
|
63 |
+
# one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
|
64 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
|
65 |
+
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
|
66 |
+
|
67 |
+
for expert_idx in range(self.num_experts):
|
68 |
+
expert_layer = self.experts[expert_idx]
|
69 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
70 |
+
if top_x.numel() > 0:
|
71 |
+
current_state = flat_hidden[top_x] # (n, hidden_dim)
|
72 |
+
current_output = expert_layer(current_state) # (n, hidden_dim)
|
73 |
+
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
|
74 |
+
weighted_output = current_output * weight
|
75 |
+
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
|
76 |
+
# 保存当前 token 对该专家的实际输出
|
77 |
+
for pos, token_idx in enumerate(top_x.tolist()):
|
78 |
+
activated_outputs[token_idx][expert_idx] = current_output[pos]
|
79 |
+
# ---------- 稀疏计算结束 ----------
|
80 |
+
|
81 |
+
# ---------- Dense估计部分 ----------
|
82 |
+
# 计算所有专家对所有 token 的 dense 输出,shape: (B*seq_len, num_experts, hidden_dim)
|
83 |
+
all_expert_outputs = torch.stack([expert(flat_hidden) for expert in self.experts], dim=1)
|
84 |
+
# 将 selected_experts 转换为 list,每个 token 的激活专家列表
|
85 |
+
all_routing = selected_experts.tolist() # 长度为 (B*seq_len)
|
86 |
+
|
87 |
+
dense_outputs = []
|
88 |
+
for i in range(flat_hidden.size(0)):
|
89 |
+
dense_est = self.estimate_dense_output(
|
90 |
+
token_idx=i,
|
91 |
+
activated=all_routing[i], # 当前 token 激活的专家列表,例如 [a, b]
|
92 |
+
gate_prob=routing_weights[i], # 当前 token 的完整 routing 权重 (num_experts,)
|
93 |
+
activated_outputs=activated_outputs[i], # 当前 token 对激活专家的实际输出
|
94 |
+
all_routing=all_routing, # 全 batch 每个 token 的激活专家列表(list of lists)
|
95 |
+
all_expert_outputs=all_expert_outputs # (B*seq_len, num_experts, hidden_dim)
|
96 |
+
)
|
97 |
+
dense_outputs.append(dense_est.unsqueeze(0))
|
98 |
+
dense_outputs = torch.cat(dense_outputs, dim=0) # (B*seq_len, hidden_dim)
|
99 |
+
# ---------- Dense估计结束 ----------
|
100 |
+
|
101 |
+
# 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
|
102 |
+
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
|
103 |
+
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
|
104 |
+
return final_output, router_logits
|
105 |
+
|
106 |
+
def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
|
107 |
+
"""
|
108 |
+
对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
|
109 |
+
参数:
|
110 |
+
token_idx: 当前 token 的索引(标量)
|
111 |
+
activated: 当前 token 激活的专家列表,例如 [1, 3]
|
112 |
+
gate_prob: 当前 token 的 routing 权重,形状 (num_experts,)
|
113 |
+
activated_outputs: dict,当前 token 对激活专家的实际输出,形状 (hidden_dim,)
|
114 |
+
all_routing: list,每个 token 的激活专家列表(长度为 N,每个元素为 list)
|
115 |
+
all_expert_outputs: Tensor, (N, num_experts, hidden_dim)
|
116 |
+
返回:
|
117 |
+
estimated_dense: Tensor, (hidden_dim,)
|
118 |
+
"""
|
119 |
+
num_experts = gate_prob.size(0)
|
120 |
+
dense_parts = {}
|
121 |
+
# 对于激活的专家,直接使用其实际输出
|
122 |
+
for idx in activated:
|
123 |
+
dense_parts[idx] = activated_outputs[idx]
|
124 |
+
# 对于未激活的专家,使用 mini-batch 中其他 token 的输出估计
|
125 |
+
non_activated = [i for i in range(num_experts) if i not in activated]
|
126 |
+
for i in non_activated:
|
127 |
+
indices = []
|
128 |
+
for idx, r_dec in enumerate(all_routing):
|
129 |
+
if (i in r_dec) and (len(set(r_dec) & set(activated)) > 0):
|
130 |
+
indices.append(idx)
|
131 |
+
if indices:
|
132 |
+
selected_outputs = all_expert_outputs[indices, i, :] # (n, hidden_dim)
|
133 |
+
estimated = selected_outputs.mean(dim=0)
|
134 |
+
else:
|
135 |
+
estimated = all_expert_outputs[:, i, :].mean(dim=0)
|
136 |
+
dense_parts[i] = estimated
|
137 |
+
# 按 gate_prob 加权求和各专家输出
|
138 |
+
estimated_dense = 0
|
139 |
+
for i in range(num_experts):
|
140 |
+
estimated_dense += gate_prob[i] * dense_parts[i]
|
141 |
+
return estimated_dense
|
142 |
+
|
143 |
+
|
144 |
+
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
|
145 |
+
"""
|
146 |
+
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
|
147 |
+
以实现 dense backward 功能。
|
148 |
+
|
149 |
+
配置类:DenseBackwardOLMoEConfig
|
150 |
+
"""
|
151 |
+
config_class = DenseBackwardOLMoEConfig
|
152 |
+
base_model_prefix = "olmoe"
|
153 |
+
|
154 |
+
def __init__(self, config):
|
155 |
+
# 首先调用父类初始化方法
|
156 |
+
super().__init__(config)
|
157 |
+
|
158 |
+
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
|
159 |
+
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", torch_dtype=torch.bfloat16)
|
160 |
+
|
161 |
+
# 复制预训练模型的状态到当前模型
|
162 |
+
self.config = pretrained_model.config
|
163 |
+
self.model = pretrained_model.model
|
164 |
+
self.vocab_size = pretrained_model.vocab_size
|
165 |
+
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
|
166 |
+
self.num_experts = pretrained_model.num_experts
|
167 |
+
self.lm_head = pretrained_model.lm_head
|
168 |
+
|
169 |
+
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
|
170 |
+
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
|
171 |
+
# 且每层中 mlp 模块包含属性 sparse_moe_block。
|
172 |
+
for layer in self.model.layers:
|
173 |
+
if hasattr(layer.mlp, "gate"):
|
174 |
+
print("111")
|
175 |
+
orig_block = layer.mlp
|
176 |
+
# 通过直接复制原版属性创建新的块
|
177 |
+
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
|
178 |
+
# 然后手动复制需要共享的属性:
|
179 |
+
new_block.gate = orig_block.gate
|
180 |
+
new_block.experts = orig_block.experts
|
181 |
+
new_block.num_experts = orig_block.num_experts
|
182 |
+
new_block.top_k = orig_block.top_k
|
183 |
+
new_block.norm_topk_prob = orig_block.norm_topk_prob
|
184 |
+
layer.mlp = new_block
|
185 |
+
print(type(layer.mlp))
|
186 |
+
# 在调用post_init()前
|
187 |
+
test_param = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
|
188 |
+
print(f"权重示例值(前): {test_param}")
|
189 |
+
self.post_init()
|
190 |
+
# 在调用post_init()后
|
191 |
+
test_param_after = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
|
192 |
+
print(f"权重示例值(后): {test_param_after}")
|
193 |
+
|
194 |
+
def main():
|
195 |
+
config = DenseBackwardOLMoEConfig( # 官方模型参数
|
196 |
+
model_marker="DenseBackward_olmoe_marker",
|
197 |
+
torch_dtype="bfloat16"
|
198 |
+
)
|
199 |
+
# 创建自定义模型实例
|
200 |
+
model = DenseBackwardOLMoEForCausalLM(config)
|
201 |
+
print(type(model))
|
202 |
+
print(type(model.model))
|
203 |
+
print(type(model.model.layers[0]))
|
204 |
+
print(type(model.model.layers[0].mlp))
|
205 |
+
print(type(model.model.layers[0].mlp.experts))
|
206 |
+
if __name__ == "__main__":
|
207 |
+
main()
|