|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP |
|
from .configuration_densebackward_olmoe import DenseBackwardOLMoEConfig |
|
|
|
|
|
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock): |
|
def forward(self, hidden_states: torch.Tensor): |
|
batch_size, seq_length, hidden_dim = hidden_states.shape |
|
flat_hidden = hidden_states.view(-1, hidden_dim) |
|
|
|
|
|
router_logits = self.gate(flat_hidden) |
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
|
|
|
|
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) |
|
if self.norm_topk_prob: |
|
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True) |
|
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype) |
|
|
|
|
|
|
|
sparse_output = torch.zeros((flat_hidden.size(0), hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device) |
|
|
|
|
|
num_tokens = flat_hidden.size(0) |
|
all_activated_outputs = {} |
|
all_routing_indices = {} |
|
token_activated_experts = {} |
|
|
|
|
|
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) |
|
expert_mask = expert_mask.permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
if top_x.numel() > 0: |
|
current_state = flat_hidden[top_x] |
|
current_output = expert_layer(current_state) |
|
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) |
|
weighted_output = current_output * weight |
|
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype)) |
|
|
|
|
|
all_activated_outputs[expert_idx] = {} |
|
all_routing_indices[expert_idx] = top_x.tolist() |
|
|
|
for pos, token_idx in enumerate(top_x.tolist()): |
|
|
|
all_activated_outputs[expert_idx][token_idx] = current_output[pos] |
|
|
|
|
|
if token_idx not in token_activated_experts: |
|
token_activated_experts[token_idx] = [] |
|
token_activated_experts[token_idx].append(expert_idx) |
|
|
|
|
|
|
|
|
|
all_routing = selected_experts.tolist() |
|
|
|
|
|
dense_outputs = [] |
|
for token_idx in range(num_tokens): |
|
|
|
activated = all_routing[token_idx] if token_idx in token_activated_experts else [] |
|
|
|
|
|
dense_est = self.estimate_dense_output_efficient( |
|
token_idx=token_idx, |
|
activated=activated, |
|
gate_prob=routing_weights[token_idx], |
|
all_activated_outputs=all_activated_outputs, |
|
all_routing_indices=all_routing_indices, |
|
token_activated_experts=token_activated_experts |
|
) |
|
dense_outputs.append(dense_est.unsqueeze(0)) |
|
|
|
dense_outputs = torch.cat(dense_outputs, dim=0) |
|
|
|
|
|
|
|
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach()) |
|
final_output = final_flat.view(batch_size, seq_length, hidden_dim) |
|
return final_output, router_logits |
|
|
|
def estimate_dense_output_efficient(self, token_idx, activated, gate_prob, |
|
all_activated_outputs, all_routing_indices, token_activated_experts): |
|
""" |
|
优化版本的dense输出估计,只使用已计算的专家输出 |
|
""" |
|
num_experts = gate_prob.size(0) |
|
dense_parts = {} |
|
|
|
|
|
for expert_idx in activated: |
|
if expert_idx in all_activated_outputs and token_idx in all_activated_outputs[expert_idx]: |
|
dense_parts[expert_idx] = all_activated_outputs[expert_idx][token_idx] |
|
|
|
|
|
non_activated = [i for i in range(num_experts) if i not in activated] |
|
for expert_idx in non_activated: |
|
|
|
if expert_idx not in all_routing_indices or not all_routing_indices[expert_idx]: |
|
|
|
dense_parts[expert_idx] = torch.zeros_like(next(iter(dense_parts.values()))) if dense_parts else 0 |
|
continue |
|
|
|
|
|
candidate_tokens = [] |
|
for other_token in all_routing_indices[expert_idx]: |
|
|
|
if other_token in token_activated_experts: |
|
common_experts = set(activated) & set(token_activated_experts[other_token]) |
|
if common_experts: |
|
candidate_tokens.append(other_token) |
|
|
|
|
|
if candidate_tokens: |
|
expert_outputs = [all_activated_outputs[expert_idx][t] for t in candidate_tokens] |
|
estimated = torch.stack(expert_outputs).mean(dim=0) |
|
else: |
|
|
|
expert_outputs = [all_activated_outputs[expert_idx][t] for t in all_routing_indices[expert_idx]] |
|
estimated = torch.stack(expert_outputs).mean(dim=0) |
|
|
|
dense_parts[expert_idx] = estimated |
|
|
|
|
|
estimated_dense = 0 |
|
for expert_idx in range(num_experts): |
|
if expert_idx in dense_parts: |
|
estimated_dense += gate_prob[expert_idx] * dense_parts[expert_idx] |
|
|
|
return estimated_dense |
|
|
|
|
|
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM): |
|
""" |
|
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块, |
|
以实现 dense backward 功能。 |
|
|
|
配置类:DenseBackwardOLMoEConfig |
|
""" |
|
config_class = DenseBackwardOLMoEConfig |
|
base_model_prefix = "olmoe" |
|
|
|
def __init__(self, config): |
|
|
|
super().__init__(config) |
|
|
|
|
|
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", torch_dtype=torch.bfloat16) |
|
|
|
|
|
self.config = pretrained_model.config |
|
self.model = pretrained_model.model |
|
self.vocab_size = pretrained_model.vocab_size |
|
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef |
|
self.num_experts = pretrained_model.num_experts |
|
self.lm_head = pretrained_model.lm_head |
|
|
|
|
|
|
|
|
|
for layer in self.model.layers: |
|
if hasattr(layer.mlp, "gate"): |
|
print("111") |
|
orig_block = layer.mlp |
|
|
|
new_block = DenseBackwardOlmoeSparseMoeBlock(config) |
|
|
|
new_block.gate = orig_block.gate |
|
new_block.experts = orig_block.experts |
|
new_block.num_experts = orig_block.num_experts |
|
new_block.top_k = orig_block.top_k |
|
new_block.norm_topk_prob = orig_block.norm_topk_prob |
|
layer.mlp = new_block |
|
print(type(layer.mlp)) |
|
|
|
test_param = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item() |
|
print(f"权重示例值(前): {test_param}") |
|
self.post_init() |
|
|
|
test_param_after = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item() |
|
print(f"权重示例值(后): {test_param_after}") |
|
|
|
def main(): |
|
config = DenseBackwardOLMoEConfig( |
|
model_marker="DenseBackward_olmoe_marker", |
|
torch_dtype="bfloat16" |
|
) |
|
|
|
model = DenseBackwardOLMoEForCausalLM(config) |
|
print(type(model)) |
|
print(type(model.model)) |
|
print(type(model.model.layers[0])) |
|
print(type(model.model.layers[0].mlp)) |
|
print(type(model.model.layers[0].mlp.experts)) |
|
if __name__ == "__main__": |
|
main() |