olmoe_densebackward / modeling_densebackward_olmoe.py
autoprogrammer's picture
Rename modeling_custom.py to modeling_densebackward_olmoe.py
eb5cb07 verified
raw
history blame
11.1 kB
# my_custom_olmoe/modeling_custom.py
import torch
import torch.nn as nn
import torch.nn.functional as F
# 导入官方实现(注意根据你的 transformers 版本调整导入路径)
from transformers.models.olmoe.modeling_olmoe import OlmoeForCausalLM, OlmoeSparseMoeBlock, OlmoeMLP
from configuration_custom import DenseBackwardOLMoEConfig
class DenseBackwardOlmoeSparseMoeBlock(OlmoeSparseMoeBlock):
"""
继承自官方 OlmoeSparseMoeBlock,实现 dense backward 功能:
前向输出依旧保持与官方相同(即稀疏计算结果),
但在反向传播时,通过直通梯度让 dense 计算的梯度传递回来,
dense 输出通过对每个专家在所有 token 上进行计算,并利用全 routing 权重加权获得。
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
"""
def forward(self, hidden_states: torch.Tensor):
"""
输入:
hidden_states: Tensor, shape (batch_size, sequence_length, hidden_dim)
输出:
final_output: Tensor, shape (batch_size, sequence_length, hidden_dim)
router_logits: Tensor, shape (batch_size * sequence_length, num_experts)
实现思路:
1. 将输入展平为 (B*seq_len, hidden_dim),通过 self.gate 得到 router_logits,
并计算全专家的 routing 权重(softmax 后)。
2. 对 routing 权重取 top-k,得到 routing_weights_topk 与 selected_experts;
如配置要求,归一化 top-k 概率。
3. 稀疏计算部分:仅计算每个 token 对于 top-k 专家的输出,
并累加得到 sparse_output(保留原版计算流程,同时记录激活专家的实际输出)。
4. Dense 估计部分:先计算所有专家对所有 token 的输出(all_expert_outputs),
再逐 token 调用 estimate_dense_output 得到 dense 输出(dense_estimated)。
5. 使用直通梯度技巧:前向输出用 sparse_output,但梯度来源于 dense_estimated。
6. 最后 reshape 为 (batch_size, sequence_length, hidden_dim) 并返回 final_output 及 router_logits.
"""
#determine the shape of hidden_states
batch_size, seq_length, hidden_dim = hidden_states.shape
flat_hidden = hidden_states.view(-1, hidden_dim) # (B*seq_len, hidden_dim)
# 计算路由 logits 和全专家 routing 权重
router_logits = self.gate(flat_hidden) # (B*seq_len, num_experts)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) # (B*seq_len, num_experts)
# Top-k 选择
routing_weights_topk, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights_topk = routing_weights_topk / routing_weights_topk.sum(dim=-1, keepdim=True)
routing_weights_topk = routing_weights_topk.to(flat_hidden.dtype)
# ---------- 稀疏计算部分 ----------
# 初始化稀疏输出,shape: (B*seq_len, hidden_dim)
sparse_output = torch.zeros((flat_hidden.size(0), hidden_dim), dtype=flat_hidden.dtype, device=flat_hidden.device)
# 用于记录每个 token 对激活专家的实际输出
activated_outputs = [{} for _ in range(flat_hidden.size(0))]
# one-hot 编码 top-k 专家,shape: (B*seq_len, top_k, num_experts)
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts) # (B*seq_len, top_k, num_experts)
expert_mask = expert_mask.permute(2, 1, 0) # (num_experts, top_k, B*seq_len)
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.numel() > 0:
current_state = flat_hidden[top_x] # (n, hidden_dim)
current_output = expert_layer(current_state) # (n, hidden_dim)
weight = routing_weights_topk[top_x, idx].unsqueeze(-1) # (n, 1)
weighted_output = current_output * weight
sparse_output.index_add_(0, top_x, weighted_output.to(flat_hidden.dtype))
# 保存当前 token 对该专家的实际输出
for pos, token_idx in enumerate(top_x.tolist()):
activated_outputs[token_idx][expert_idx] = current_output[pos]
# ---------- 稀疏计算结束 ----------
# ---------- Dense估计部分 ----------
# 计算所有专家对所有 token 的 dense 输出,shape: (B*seq_len, num_experts, hidden_dim)
all_expert_outputs = torch.stack([expert(flat_hidden) for expert in self.experts], dim=1)
# 将 selected_experts 转换为 list,每个 token 的激活专家列表
all_routing = selected_experts.tolist() # 长度为 (B*seq_len)
dense_outputs = []
for i in range(flat_hidden.size(0)):
dense_est = self.estimate_dense_output(
token_idx=i,
activated=all_routing[i], # 当前 token 激活的专家列表,例如 [a, b]
gate_prob=routing_weights[i], # 当前 token 的完整 routing 权重 (num_experts,)
activated_outputs=activated_outputs[i], # 当前 token 对激活专家的实际输出
all_routing=all_routing, # 全 batch 每个 token 的激活专家列表(list of lists)
all_expert_outputs=all_expert_outputs # (B*seq_len, num_experts, hidden_dim)
)
dense_outputs.append(dense_est.unsqueeze(0))
dense_outputs = torch.cat(dense_outputs, dim=0) # (B*seq_len, hidden_dim)
# ---------- Dense估计结束 ----------
# 使用直通梯度:前向输出用稀疏结果,但反向传播时梯度来源于 dense 估计
final_flat = sparse_output.detach() + (dense_outputs - dense_outputs.detach())
final_output = final_flat.view(batch_size, seq_length, hidden_dim)
return final_output, router_logits
def estimate_dense_output(self, token_idx, activated, gate_prob, activated_outputs, all_routing, all_expert_outputs):
"""
对于当前 token,根据 mini-batch 中的信息估计 dense 输出。
参数:
token_idx: 当前 token 的索引(标量)
activated: 当前 token 激活的专家列表,例如 [1, 3]
gate_prob: 当前 token 的 routing 权重,形状 (num_experts,)
activated_outputs: dict,当前 token 对激活专家的实际输出,形状 (hidden_dim,)
all_routing: list,每个 token 的激活专家列表(长度为 N,每个元素为 list)
all_expert_outputs: Tensor, (N, num_experts, hidden_dim)
返回:
estimated_dense: Tensor, (hidden_dim,)
"""
num_experts = gate_prob.size(0)
dense_parts = {}
# 对于激活的专家,直接使用其实际输出
for idx in activated:
dense_parts[idx] = activated_outputs[idx]
# 对于未激活的专家,使用 mini-batch 中其他 token 的输出估计
non_activated = [i for i in range(num_experts) if i not in activated]
for i in non_activated:
indices = []
for idx, r_dec in enumerate(all_routing):
if (i in r_dec) and (len(set(r_dec) & set(activated)) > 0):
indices.append(idx)
if indices:
selected_outputs = all_expert_outputs[indices, i, :] # (n, hidden_dim)
estimated = selected_outputs.mean(dim=0)
else:
estimated = all_expert_outputs[:, i, :].mean(dim=0)
dense_parts[i] = estimated
# 按 gate_prob 加权求和各专家输出
estimated_dense = 0
for i in range(num_experts):
estimated_dense += gate_prob[i] * dense_parts[i]
return estimated_dense
class DenseBackwardOLMoEForCausalLM(OlmoeForCausalLM):
"""
自定义的 Olmoe ForCausalLM 模型,使用新的 DenseBackwardOlmoeSparseMoeBlock 替换原版的 MoE 模块,
以实现 dense backward 功能。
配置类:DenseBackwardOLMoEConfig
"""
config_class = DenseBackwardOLMoEConfig
base_model_prefix = "olmoe"
def __init__(self, config):
# 首先调用父类初始化方法
super().__init__(config)
# 不要尝试重新赋值self,而是从预训练模型加载并更新当前模型
pretrained_model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924", torch_dtype=torch.bfloat16)
# 复制预训练模型的状态到当前模型
self.config = pretrained_model.config
self.model = pretrained_model.model
self.vocab_size = pretrained_model.vocab_size
self.router_aux_loss_coef = pretrained_model.router_aux_loss_coef
self.num_experts = pretrained_model.num_experts
self.lm_head = pretrained_model.lm_head
# 遍历模型中所有 decoder 层,替换每个 OlmoeSparseMoeBlock 为 DenseBackward 版本
# 此处假设官方模型在 self.model.layers 中组织 decoder 层,
# 且每层中 mlp 模块包含属性 sparse_moe_block。
for layer in self.model.layers:
if hasattr(layer.mlp, "gate"):
print("111")
orig_block = layer.mlp
# 通过直接复制原版属性创建新的块
new_block = DenseBackwardOlmoeSparseMoeBlock(config) # 或其他适当参数
# 然后手动复制需要共享的属性:
new_block.gate = orig_block.gate
new_block.experts = orig_block.experts
new_block.num_experts = orig_block.num_experts
new_block.top_k = orig_block.top_k
new_block.norm_topk_prob = orig_block.norm_topk_prob
layer.mlp = new_block
print(type(layer.mlp))
# 在调用post_init()前
test_param = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
print(f"权重示例值(前): {test_param}")
self.post_init()
# 在调用post_init()后
test_param_after = self.model.layers[0].mlp.experts[0].up_proj.weight.data[0, 0].item()
print(f"权重示例值(后): {test_param_after}")
def main():
config = DenseBackwardOLMoEConfig( # 官方模型参数
model_marker="DenseBackward_olmoe_marker",
torch_dtype="bfloat16"
)
# 创建自定义模型实例
model = DenseBackwardOLMoEForCausalLM(config)
print(type(model))
print(type(model.model))
print(type(model.model.layers[0]))
print(type(model.model.layers[0].mlp))
print(type(model.model.layers[0].mlp.experts))
if __name__ == "__main__":
main()