--- license: apache-2.0 pipeline_tag: tabular-classification --- # Mitra Classifier Mitra classifier is a tabular foundation model that is pre-trained on purely synthetic datasets sampled from a mix of random classifiers. ## Architecture Mitra is based on a 12-layer Transformer of 72 M parameters, pre-trained by incorporating an in-context learning paradigm. ## Usage To use Mitra classifier, install AutoGluon by running: ```sh pip install uv uv pip install autogluon.tabular[mitra] ``` A minimal example showing how to perform inference using the Mitra classifier: ```python import pandas as pd from autogluon.tabular import TabularDataset, TabularPredictor from sklearn.model_selection import train_test_split from sklearn.datasets import load_wine # Load datasets wine_data = load_wine() wine_df = pd.DataFrame(wine_data.data, columns=wine_data.feature_names) wine_df['target'] = wine_data.target print("Dataset shapes:") print(f"Wine: {wine_df.shape}") # Create train/test splits (80/20) wine_train, wine_test = train_test_split(wine_df, test_size=0.2, random_state=42, stratify=wine_df['target']) print("Training set sizes:") print(f"Wine: {len(wine_train)} samples") # Convert to TabularDataset wine_train_data = TabularDataset(wine_train) wine_test_data = TabularDataset(wine_test) # Create predictor with Mitra print("Training Mitra classifier on classification dataset...") mitra_predictor = TabularPredictor(label='target') mitra_predictor.fit( wine_train_data, hyperparameters={ 'MITRA': {'fine_tune': False} }, ) print("\nMitra training completed!") # Make predictions mitra_predictions = mitra_predictor.predict(wine_test_data) print("Sample Mitra predictions:") print(mitra_predictions.head(10)) # Show prediction probabilities for first few samples mitra_predictions = mitra_predictor.predict_proba(wine_test_data) print(mitra_predictions.head()) # Show model leaderboard print("\nMitra Model Leaderboard:") mitra_predictor.leaderboard(wine_test_data) ``` A minimal example showing how to perform fine-tuning using the Mitra classifier: ```python mitra_predictor_ft = TabularPredictor(label='target') mitra_predictor_ft.fit( wine_train_data, hyperparameters={ 'MITRA': {'fine_tune': True, 'fine_tune_steps': 10} }, time_limit=120, # 2 minutes ) print("\nMitra fine-tuning completed!") # Show model leaderboard print("\nMitra Model Leaderboard:") mitra_predictor_ft.leaderboard(wine_test_data) ``` ## License This project is licensed under the Apache-2.0 License. ## Reference Amazon Science blog: [Mitra: Mixed synthetic priors for enhancing tabular foundation models](https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models?utm_campaign=mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_medium=organic-asw&utm_source=linkedin&utm_content=2025-7-22-mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_term=2025-july)