File size: 2,564 Bytes
			
			7dfa11e a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 a9a7e6e cf10b45 7dfa11e dace771 7dfa11e  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117  | 
								---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
name: autoevaluate-binary-classification
results:
- task:
    type: text-classification
    name: Text Classification
  dataset:
    name: glue
    type: glue
    config: sst2
    split: validation
  metrics:
  - name: Accuracy
    type: accuracy
    value: 0.8967889908256881
    verified: true
    foo: 1234
model-index:
- name: autoevaluate-binary-classification
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: glue
      type: glue
      args: sst2
    metrics:
    - type: accuracy
      value: 0.8967889908256881
      name: Accuracy
    - type: accuracy
      value: 0.8967889908256881
      name: Accuracy
      verified: true
    - type: precision
      value: 0.8898678414096917
      name: Precision
      verified: true
    - type: recall
      value: 0.9099099099099099
      name: Recall
      verified: true
    - type: auc
      value: 0.967247621453229
      name: AUC
      verified: true
    - type: f1
      value: 0.8997772828507795
      name: F1
      verified: true
    - type: loss
      value: 0.30091655254364014
      name: loss
      verified: true
    - type: matthews_correlation
      value: 0.793630584795814
      name: matthews_correlation
      verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# binary-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3009
- Accuracy: 0.8968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.175         | 1.0   | 4210 | 0.3009          | 0.8968   |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
 |