--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-5hrs-v1 results: [] --- # mms-1b-all-sw-CV_Fleurs_AMMI_ALFFA-5hrs-v1 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset. It achieves the following results on the evaluation set: - Wer: 0.2369 - Cer: 0.0801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Val Wer | Val Cer | |:-------------:|:-----:|:----:|:------:|:------:| | 9.5784 | 1.0 | 183 | 0.9998 | 0.9646 | | 1.9211 | 2.0 | 366 | 0.2887 | 0.0983 | | 0.6977 | 3.0 | 549 | 0.2641 | 0.0915 | | 0.6391 | 4.0 | 732 | 0.2568 | 0.0893 | | 0.59 | 5.0 | 915 | 0.2502 | 0.0874 | | 0.5654 | 6.0 | 1098 | 0.2489 | 0.0865 | | 0.5544 | 7.0 | 1281 | 0.2459 | 0.0853 | | 0.5385 | 8.0 | 1464 | 0.2443 | 0.0846 | | 0.5256 | 9.0 | 1647 | 0.2442 | 0.0841 | | 0.5152 | 10.0 | 1830 | 0.2420 | 0.0837 | | 0.5116 | 11.0 | 2013 | 0.2411 | 0.0833 | | 0.497 | 12.0 | 2196 | 0.2414 | 0.0829 | | 0.4969 | 13.0 | 2379 | 0.2400 | 0.0826 | | 0.4887 | 14.0 | 2562 | 0.2396 | 0.0824 | | 0.4849 | 15.0 | 2745 | 0.2394 | 0.0820 | | 0.473 | 16.0 | 2928 | 0.2396 | 0.0820 | | 0.4732 | 17.0 | 3111 | 0.2403 | 0.0819 | | 0.4648 | 18.0 | 3294 | 0.2396 | 0.0817 | | 0.4608 | 19.0 | 3477 | 0.2397 | 0.0817 | | 0.4583 | 20.0 | 3660 | 0.2397 | 0.0815 | | 0.4579 | 21.0 | 3843 | 0.2402 | 0.0817 | | 0.447 | 22.0 | 4026 | 0.2379 | 0.0813 | | 0.4442 | 23.0 | 4209 | 0.2373 | 0.0809 | | 0.439 | 24.0 | 4392 | 0.2373 | 0.0809 | | 0.4381 | 25.0 | 4575 | 0.2376 | 0.0809 | | 0.4386 | 26.0 | 4758 | 0.2377 | 0.0807 | | 0.423 | 27.0 | 4941 | 0.2360 | 0.0804 | | 0.428 | 28.0 | 5124 | 0.2366 | 0.0803 | | 0.425 | 29.0 | 5307 | 0.2368 | 0.0804 | | 0.4169 | 30.0 | 5490 | 0.2376 | 0.0803 | | 0.4253 | 31.0 | 5673 | 0.2367 | 0.0802 | | 0.4173 | 32.0 | 5856 | 0.2371 | 0.0802 | | 0.414 | 33.0 | 6039 | 0.2362 | 0.0800 | | 0.414 | 34.0 | 6222 | 0.2367 | 0.0803 | | 0.4064 | 35.0 | 6405 | 0.2373 | 0.0801 | | 0.402 | 36.0 | 6588 | 0.2370 | 0.0802 | | 0.4035 | 37.0 | 6771 | 0.2369 | 0.0801 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0