--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_1hr_v2 results: [] --- # W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_1hr_v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4556 - Model Preparation Time: 0.0127 - Wer: 0.3692 - Cer: 0.0718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:----------------------:|:------:|:------:| | 7.2051 | 0.9778 | 22 | 6.1914 | 0.0127 | 1.0 | 0.9176 | | 4.1072 | 2.0 | 45 | 3.1571 | 0.0127 | 1.0 | 0.9905 | | 3.0778 | 2.9778 | 67 | 2.8928 | 0.0127 | 1.0 | 0.9418 | | 2.6835 | 4.0 | 90 | 2.5263 | 0.0127 | 1.0 | 0.7968 | | 2.0498 | 4.9778 | 112 | 1.1299 | 0.0127 | 0.9935 | 0.3234 | | 0.6781 | 6.0 | 135 | 0.4324 | 0.0127 | 0.5731 | 0.0952 | | 0.3809 | 6.9778 | 157 | 0.3307 | 0.0127 | 0.4004 | 0.0667 | | 0.2728 | 8.0 | 180 | 0.2900 | 0.0127 | 0.3482 | 0.0571 | | 0.2301 | 8.9778 | 202 | 0.2700 | 0.0127 | 0.3382 | 0.0549 | | 0.1725 | 10.0 | 225 | 0.2791 | 0.0127 | 0.3510 | 0.0541 | | 0.1417 | 10.9778 | 247 | 0.2745 | 0.0127 | 0.3643 | 0.0551 | | 0.1158 | 12.0 | 270 | 0.3095 | 0.0127 | 0.3256 | 0.0534 | | 0.1125 | 12.9778 | 292 | 0.2983 | 0.0127 | 0.3407 | 0.0555 | | 0.0854 | 14.0 | 315 | 0.3183 | 0.0127 | 0.3505 | 0.0540 | | 0.078 | 14.9778 | 337 | 0.3576 | 0.0127 | 0.3409 | 0.0549 | | 0.0661 | 16.0 | 360 | 0.3444 | 0.0127 | 0.3550 | 0.0567 | | 0.0736 | 16.9778 | 382 | 0.3750 | 0.0127 | 0.3570 | 0.0595 | | 0.0584 | 18.0 | 405 | 0.3570 | 0.0127 | 0.3738 | 0.0583 | | 0.0503 | 18.9778 | 427 | 0.4068 | 0.0127 | 0.3740 | 0.0612 | | 0.0498 | 20.0 | 450 | 0.3769 | 0.0127 | 0.3545 | 0.0581 | | 0.0549 | 20.9778 | 472 | 0.3819 | 0.0127 | 0.3620 | 0.0574 | | 0.049 | 22.0 | 495 | 0.3945 | 0.0127 | 0.3632 | 0.0582 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.2.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1