Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- SetFit/amazon_reviews_multi_en
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
base_model:
|
10 |
+
- distilbert/distilbert-base-uncased
|
11 |
+
pipeline_tag: text-classification
|
12 |
+
---
|
13 |
+
This repository contains a fine-tuned DistilBERT model for sentiment classification of Amazon product reviews The model classifies a given review into two classes: Positive and Negative
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## **Model Overview**
|
18 |
+
- **Base Model**: [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
|
19 |
+
- **Dataset**: [SetFit/amazon_reviews_multi_en](https://huggingface.co/datasets/SetFit/amazon_reviews_multi_en),
|
20 |
+
- **Classes**: Binary classification (`Positive`, `Negative`)
|
21 |
+
- **Performance**:
|
22 |
+
- **Test Accuracy**: 90%
|
23 |
+
- **Validation Accuracy**: 90%
|
24 |
+
|
25 |
+
*Figure 1: Confusion matrix for test data*
|
26 |
+

|
27 |
+
|
28 |
+
)
|
29 |
+
|
30 |
+
*Figure 2: Confusion matrix for validation data*
|
31 |
+
|
32 |
+

|
33 |
+
|
34 |
+
### How to Use the Model
|
35 |
+
|
36 |
+
Below is an example of how to load and use the model for sentiment classification:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import DistilBertTokenizer,DistilBertForSequenceClassification,
|
40 |
+
import torch
|
41 |
+
import streamlit as st
|
42 |
+
|
43 |
+
# Load the tokenizer and model
|
44 |
+
tokenizer = DistilBertForSequenceClassification.from_pretrained(
|
45 |
+
"ashish-001/DistilBert-Amazon-review-sentiment-classifier")
|
46 |
+
model = DistilBertTokenizer.from_pretrained(
|
47 |
+
"ashish-001/DistilBert-Amazon-review-sentiment-classifier")
|
48 |
+
|
49 |
+
# Example usage
|
50 |
+
text = "This product is amazing!"
|
51 |
+
inputs = tokenizer(text, return_tensors="pt")
|
52 |
+
outputs = model(**inputs)
|
53 |
+
logits = outputs.logits
|
54 |
+
sentiment = torch.argmax(logits, dim=1).item()
|
55 |
+
|
56 |
+
print(f"Predicted sentiment: {'Positive' if sentiment else 'Negative'}")
|