File size: 8,779 Bytes
347a75c
 
8ce3503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347a75c
96a578b
347a75c
96a578b
347a75c
 
 
96a578b
347a75c
96a578b
 
 
347a75c
96a578b
 
 
 
 
 
 
347a75c
96a578b
347a75c
96a578b
347a75c
96a578b
347a75c
96a578b
347a75c
dd945a5
 
 
b6284ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce3503
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: transformers
tags:
- orpo
- llama3-8B
- Supervised_Training
model-index:
- name: LLAMA_Harsha_8_B_ORDP_10k
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 34.64
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 25.73
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.21
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.13
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.07
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 20.11
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k
      name: Open LLM Leaderboard
license: apache-2.0
datasets:
- mlabonne/orpo-dpo-mix-40k
language:
- en
base_model:
- meta-llama/Llama-3.1-8B
---

# asharsha30/LLAMA_Harsha_8_B_ORDP_10k

This model is the fine tune of NousResearch/Meta-Llama-3-8B using the 12,000 steps of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).



## 💻 Usage

```python
# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="asharsha30/LLAMA_Harsha_8_B_ORDP_10k")
pipe(messages)
```
## 📈Training And Evaluation Report:

Reports from Wandb

https://wandb.ai/asharshavardhana96-texas-a-m-university/huggingface/runs/gky6j4vn?nw=nwuserasharshavardhana96

## Acknowledgment:

Huge thanks to Maxime Labonne for his brilliant blog post covering about the techniques related to finetuning the llama models using SFT and ORPO

## Evaluated Using: 

The model is evaluated using the https://github.com/mlabonne/llm-autoeval and the results are summarized from the generated gist https://gist.github.com/asharsha30-1996/4162fc98d9669aab3080645c54905bd0

## Accuracy measure on Neous Benchmarks:

|                                         Model                                          |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|----------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[LLAMA_Harsha_8_B_ORDP_10k](https://huggingface.co/asharsha30/LLAMA_Harsha_8_B_ORDP_10k)|  35.54|  71.15|     55.39|   37.96|  50.01|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |26.77|±  |  2.78|
|                              |       |acc_norm|27.17|±  |  2.80|
|agieval_logiqa_en             |      0|acc     |31.34|±  |  1.82|
|                              |       |acc_norm|33.03|±  |  1.84|
|agieval_lsat_ar               |      0|acc     |18.70|±  |  2.58|
|                              |       |acc_norm|19.57|±  |  2.62|
|agieval_lsat_lr               |      0|acc     |42.94|±  |  2.19|
|                              |       |acc_norm|35.10|±  |  2.12|
|agieval_lsat_rc               |      0|acc     |52.42|±  |  3.05|
|                              |       |acc_norm|43.87|±  |  3.03|
|agieval_sat_en                |      0|acc     |65.53|±  |  3.32|
|                              |       |acc_norm|54.37|±  |  3.48|
|agieval_sat_en_without_passage|      0|acc     |41.75|±  |  3.44|
|                              |       |acc_norm|33.98|±  |  3.31|
|agieval_sat_math              |      0|acc     |42.27|±  |  3.34|
|                              |       |acc_norm|37.27|±  |  3.27|

Average: 35.54%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |49.91|±  |  1.46|
|             |       |acc_norm|54.10|±  |  1.46|
|arc_easy     |      0|acc     |80.47|±  |  0.81|
|             |       |acc_norm|80.05|±  |  0.82|
|boolq        |      1|acc     |82.08|±  |  0.67|
|hellaswag    |      0|acc     |61.08|±  |  0.49|
|             |       |acc_norm|80.26|±  |  0.40|
|openbookqa   |      0|acc     |34.00|±  |  2.12|
|             |       |acc_norm|45.00|±  |  2.23|
|piqa         |      0|acc     |79.71|±  |  0.94|
|             |       |acc_norm|81.61|±  |  0.90|
|winogrande   |      0|acc     |74.98|±  |  1.22|

Average: 71.15%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |37.45|±  |  1.69|
|             |       |mc2   |55.39|±  |  1.50|

Average: 55.39%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|57.37|±  |  3.60|
|bigbench_date_understanding                     |      0|multiple_choice_grade|68.02|±  |  2.43|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|31.01|±  |  2.89|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|20.89|±  |  2.15|
|                                                |       |exact_str_match      | 0.00|±  |  0.00|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|28.40|±  |  2.02|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|20.71|±  |  1.53|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|48.67|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|31.60|±  |  2.08|
|bigbench_navigate                               |      0|multiple_choice_grade|50.60|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|63.25|±  |  1.08|
|bigbench_ruin_names                             |      0|multiple_choice_grade|34.38|±  |  2.25|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|21.84|±  |  1.31|
|bigbench_snarks                                 |      0|multiple_choice_grade|44.20|±  |  3.70|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|50.30|±  |  1.59|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|26.30|±  |  1.39|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|21.36|±  |  1.16|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|15.77|±  |  0.87|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|48.67|±  |  2.89|

Average: 37.96%

Average score: 50.01%

Elapsed time: 02:36:38