File size: 2,967 Bytes
8919656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
language:
- en
- es
---
# Neural Machine Translation with Attention π
A PyTorch implementation of a Sequence-to-Sequence model with Attention for English-Spanish translation.



## π Features
- **Bidirectional GRU Encoder**: Captures context from both directions of the input sequence
- **Attention Mechanism**: Helps the model focus on relevant parts of the input sequence
- **Teacher Forcing**: Implements curriculum learning for better training stability
- **Dynamic Batching**: Efficient training with variable sequence lengths
- **Hugging Face Integration**: Uses MarianTokenizer for robust text processing
## ποΈ Architecture
The model consists of three main components:
1. **Encoder**: Bidirectional GRU network that processes input sequences
2. **Attention**: Computes attention weights for each encoder state
3. **Decoder**: GRU network that generates translations using attention context
```plaintext
Input β Encoder β Attention β Decoder β Translation
β β β
Embeddings Context Attention Weights
```
## π Quick Start
1. Clone the repository:
```bash
git clone https://github.com/yourusername/nmt-attention.git
cd nmt-attention
```
2. Install dependencies:
```bash
pip install torch transformers datasets
```
3. Train the model:
```python
python train.py
```
4. Translate text:
```python
from translate import translate
text = "How are you?"
translated = translate(model, text, tokenizer)
print(translated)
# Loading a saved model
model = Seq2Seq(encoder, decoder, device)
model.load_state_dict(torch.load('LSTM_text_generator.pth'))
model.eval()
```
## π Model Performance
Training metrics after 10 epochs:
- Initial Loss: 11.147
- Final Loss: 3.527
- Training Time: ~2 hours on NVIDIA V100
## π§ Hyperparameters
```python
BATCH_SIZE = 32
LEARNING_RATE = 1e-3
CLIP = 1.0
N_EPOCHS = 10
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
ENC_HID_DIM = 512
DEC_HID_DIM = 512
```
## π Dataset
Using the `loresiensis/corpus-en-es` dataset from Hugging Face Hub, which provides English-Spanish sentence pairs for training.
## π€ Contributing
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- [Attention Is All You Need](https://arxiv.org/abs/1706.03762) paper
- Hugging Face for the transformers library and datasets
- PyTorch team for the amazing deep learning framework
---
βοΈ If you found this project helpful, please consider giving it a star! |