File size: 3,463 Bytes
c304fa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- stuttered-speech
- speech-recognition
- asr
- whisper
- disfluency
- generated_from_trainer
datasets:
- arielcerdap/TimeStamped
metrics:
- wer
model-index:
- name: Whisper Large V3 Optimized for Stuttered Speech
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: TimeStamped
type: arielcerdap/TimeStamped
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 10.391803647827066
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large V3 Optimized for Stuttered Speech
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the TimeStamped dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8521
- Wer: 10.3918
- Wer Ortho: 5.5937
- Cer: 5.5914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 8000
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho | Cer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:---------:|:------:|
| 1.4877 | 5.8187 | 500 | 1.6643 | 12.9475 | 7.3346 | 7.4041 |
| 1.4373 | 11.6316 | 1000 | 1.6887 | 14.1410 | 9.0894 | 9.1010 |
| 1.4112 | 17.4444 | 1500 | 1.7115 | 10.0203 | 5.5033 | 5.5149 |
| 1.4089 | 23.2573 | 2000 | 1.7320 | 9.7838 | 5.4036 | 5.4129 |
| 1.4085 | 29.0702 | 2500 | 1.7222 | 10.0090 | 5.3503 | 5.3572 |
| 1.4176 | 34.8889 | 3000 | 1.7498 | 11.8442 | 7.0101 | 7.0101 |
| 1.4162 | 40.7018 | 3500 | 1.7794 | 11.7654 | 6.9683 | 6.9683 |
| 1.4045 | 46.5146 | 4000 | 1.7699 | 12.1031 | 7.1074 | 7.1051 |
| 1.401 | 52.3275 | 4500 | 1.7946 | 12.0919 | 7.1468 | 7.1445 |
| 1.4007 | 58.1404 | 5000 | 1.8018 | 9.9527 | 5.3966 | 5.3943 |
| 1.4145 | 63.9591 | 5500 | 1.8229 | 10.2342 | 5.5079 | 5.5056 |
| 1.4142 | 69.7719 | 6000 | 1.8371 | 10.3468 | 5.5566 | 5.5543 |
| 1.414 | 75.5848 | 6500 | 1.8430 | 10.3580 | 5.5682 | 5.5659 |
| 1.3998 | 81.3977 | 7000 | 1.8494 | 10.3805 | 5.5867 | 5.5844 |
| 1.3997 | 87.2105 | 7500 | 1.8516 | 10.3918 | 5.5960 | 5.5937 |
| 1.3997 | 93.0234 | 8000 | 1.8521 | 10.3918 | 5.5937 | 5.5914 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
|