File size: 3,463 Bytes
c304fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- stuttered-speech
- speech-recognition
- asr
- whisper
- disfluency
- generated_from_trainer
datasets:
- arielcerdap/TimeStamped
metrics:
- wer
model-index:
- name: Whisper Large V3 Optimized for Stuttered Speech
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: TimeStamped
      type: arielcerdap/TimeStamped
      args: 'config: en, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 10.391803647827066
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large V3 Optimized for Stuttered Speech

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the TimeStamped dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8521
- Wer: 10.3918
- Wer Ortho: 5.5937
- Cer: 5.5914

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 8000
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     | Wer Ortho | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:---------:|:------:|
| 1.4877        | 5.8187  | 500  | 1.6643          | 12.9475 | 7.3346    | 7.4041 |
| 1.4373        | 11.6316 | 1000 | 1.6887          | 14.1410 | 9.0894    | 9.1010 |
| 1.4112        | 17.4444 | 1500 | 1.7115          | 10.0203 | 5.5033    | 5.5149 |
| 1.4089        | 23.2573 | 2000 | 1.7320          | 9.7838  | 5.4036    | 5.4129 |
| 1.4085        | 29.0702 | 2500 | 1.7222          | 10.0090 | 5.3503    | 5.3572 |
| 1.4176        | 34.8889 | 3000 | 1.7498          | 11.8442 | 7.0101    | 7.0101 |
| 1.4162        | 40.7018 | 3500 | 1.7794          | 11.7654 | 6.9683    | 6.9683 |
| 1.4045        | 46.5146 | 4000 | 1.7699          | 12.1031 | 7.1074    | 7.1051 |
| 1.401         | 52.3275 | 4500 | 1.7946          | 12.0919 | 7.1468    | 7.1445 |
| 1.4007        | 58.1404 | 5000 | 1.8018          | 9.9527  | 5.3966    | 5.3943 |
| 1.4145        | 63.9591 | 5500 | 1.8229          | 10.2342 | 5.5079    | 5.5056 |
| 1.4142        | 69.7719 | 6000 | 1.8371          | 10.3468 | 5.5566    | 5.5543 |
| 1.414         | 75.5848 | 6500 | 1.8430          | 10.3580 | 5.5682    | 5.5659 |
| 1.3998        | 81.3977 | 7000 | 1.8494          | 10.3805 | 5.5867    | 5.5844 |
| 1.3997        | 87.2105 | 7500 | 1.8516          | 10.3918 | 5.5960    | 5.5937 |
| 1.3997        | 93.0234 | 8000 | 1.8521          | 10.3918 | 5.5937    | 5.5914 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1