Update README.md
Browse files
README.md
CHANGED
@@ -18,12 +18,126 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
18 |
## Quick start
|
19 |
|
20 |
```python
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
|
29 |
## Training procedure
|
|
|
18 |
## Quick start
|
19 |
|
20 |
```python
|
21 |
+
import json
|
22 |
+
import re
|
23 |
+
from typing import Optional
|
24 |
|
25 |
+
from jinja2 import Template
|
26 |
+
import torch
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
from transformers.utils import get_json_schema
|
29 |
+
|
30 |
+
|
31 |
+
system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions.
|
32 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
33 |
+
If none of the functions can be used, point it out and refuse to answer.
|
34 |
+
If the given question lacks the parameters required by the function, also point it out.
|
35 |
+
|
36 |
+
You have access to the following tools:
|
37 |
+
<tools>{{ tools }}</tools>
|
38 |
+
|
39 |
+
The output MUST strictly adhere to the following format, and NO other text MUST be included.
|
40 |
+
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'.
|
41 |
+
<tool_call>[
|
42 |
+
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
|
43 |
+
... (more tool calls as required)
|
44 |
+
]</tool_call>""")
|
45 |
+
|
46 |
+
|
47 |
+
def prepare_messages(
|
48 |
+
query: str,
|
49 |
+
tools: Optional[dict[str, any]] = None,
|
50 |
+
history: Optional[list[dict[str, str]]] = None
|
51 |
+
) -> list[dict[str, str]]:
|
52 |
+
"""Prepare the system and user messages for the given query and tools.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
query: The query to be answered.
|
56 |
+
tools: The tools available to the user. Defaults to None, in which case if a
|
57 |
+
list without content will be passed to the model.
|
58 |
+
history: Exchange of messages, including the system_prompt from
|
59 |
+
the first query. Defaults to None, the first message in a conversation.
|
60 |
+
"""
|
61 |
+
if tools is None:
|
62 |
+
tools = []
|
63 |
+
if history:
|
64 |
+
messages = history.copy()
|
65 |
+
messages.append({"role": "user", "content": query})
|
66 |
+
else:
|
67 |
+
messages = [
|
68 |
+
{"role": "system", "content": system_prompt.render(tools=json.dumps(tools))},
|
69 |
+
{"role": "user", "content": query}
|
70 |
+
]
|
71 |
+
return messages
|
72 |
+
|
73 |
+
|
74 |
+
def parse_response(text: str) -> str | dict[str, any]:
|
75 |
+
"""Parses a response from the model, returning either the
|
76 |
+
parsed list with the tool calls parsed, or the
|
77 |
+
model thought or response if couldn't generate one.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
text: Response from the model.
|
81 |
+
"""
|
82 |
+
pattern = r"<tool_call>(.*?)</tool_call>"
|
83 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
84 |
+
if matches:
|
85 |
+
return json.loads(matches[0])
|
86 |
+
return text
|
87 |
+
|
88 |
+
|
89 |
+
model_name_llama = "plaguss/Llama-3.2-1B-Instruct-v2-FC"
|
90 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_llama, device_map="auto", torch_dtype="auto", trust_remote_code=True)
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_llama)
|
92 |
+
|
93 |
+
from datetime import datetime
|
94 |
+
import random
|
95 |
+
|
96 |
+
def get_current_time() -> str:
|
97 |
+
"""Returns the current time in 24-hour format.
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
str: Current time in HH:MM:SS format.
|
101 |
+
"""
|
102 |
+
return datetime.now().strftime("%H:%M:%S")
|
103 |
+
|
104 |
+
|
105 |
+
def get_random_number_between(min: int, max: int) -> int:
|
106 |
+
"""
|
107 |
+
Gets a random number between min and max.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
min: The minimum number.
|
111 |
+
max: The maximum number.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
A random number between min and max.
|
115 |
+
"""
|
116 |
+
return random.randint(min, max)
|
117 |
+
|
118 |
+
|
119 |
+
tools = [get_json_schema(get_random_number_between), get_json_schema(get_current_time)]
|
120 |
+
|
121 |
+
toolbox = {"get_random_number_between": get_random_number_between, "get_current_time": get_current_time}
|
122 |
+
|
123 |
+
query = "Give me a number between 1 and 300"
|
124 |
+
query = "Can you give me the hour?"
|
125 |
+
|
126 |
+
messages = prepare_messages(query, tools=tools)
|
127 |
+
|
128 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
129 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
130 |
+
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
131 |
+
|
132 |
+
tool_calls = parse_response(result)
|
133 |
+
# [{'name': 'get_random_number_between', 'arguments': {'min': 1, 'max': 300}}
|
134 |
+
|
135 |
+
# Get tool responses
|
136 |
+
tool_responses = [toolbox.get(tc["name"])(*tc["arguments"].values()) for tc in tool_calls]
|
137 |
+
# ['07:20:47']
|
138 |
+
|
139 |
+
tool_response = get_random_number_between(*tool_calls[0].get("arguments").values())
|
140 |
+
# 45
|
141 |
```
|
142 |
|
143 |
## Training procedure
|