--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 279be00c-0c7b-4757-81d7-807671f84b85 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - de8d19745534077b_train_data.json ds_type: json format: custom path: /workspace/input_data/de8d19745534077b_train_data.json type: field_instruction: ca_topic field_output: article format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ardaspear/279be00c-0c7b-4757-81d7-807671f84b85 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - lm_head lora_r: 64 lora_target_linear: true loraplus_lr_ratio: 8 lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 8 mlflow_experiment_name: /tmp/de8d19745534077b_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: b901d79f-9b0d-4b1f-b4d1-1b4dbd612e65 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 279be00c-0c7b-4757-81d7-807671f84b85 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.2310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 10.3792 | | 10.1577 | 0.0588 | 50 | 10.1284 | | 9.912 | 0.1177 | 100 | 9.8863 | | 9.6954 | 0.1765 | 150 | 9.6638 | | 9.4987 | 0.2354 | 200 | 9.4829 | | 9.3916 | 0.2942 | 250 | 9.3790 | | 9.2735 | 0.3530 | 300 | 9.2733 | | 9.2363 | 0.4119 | 350 | 9.2410 | | 9.2265 | 0.4707 | 400 | 9.2328 | | 9.2234 | 0.5296 | 450 | 9.2314 | | 9.2272 | 0.5884 | 500 | 9.2309 | | 9.2246 | 0.6472 | 550 | 9.2309 | | 9.2266 | 0.7061 | 600 | 9.2310 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1