--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 256f9e7b-2983-48ef-8be0-c98dfc6f9fee results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-4k-instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 11bb3328a39885eb_train_data.json ds_type: json format: custom path: /workspace/input_data/11bb3328a39885eb_train_data.json type: field_instruction: query field_output: atom format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ardaspear/256f9e7b-2983-48ef-8be0-c98dfc6f9fee hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - lm_head lora_r: 64 lora_target_linear: true loraplus_lr_ratio: 8 lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 8 mlflow_experiment_name: /tmp/11bb3328a39885eb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 7ce72720-2645-47e1-9d12-b5a347cab783 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 7ce72720-2645-47e1-9d12-b5a347cab783 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 256f9e7b-2983-48ef-8be0-c98dfc6f9fee This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | 4.4778 | | 8.2119 | 0.0943 | 50 | 7.4195 | | 6.9458 | 0.1887 | 100 | 14.9005 | | 6.2023 | 0.2830 | 150 | 11.4503 | | 3.7041 | 0.3774 | 200 | 10.5616 | | 3.5489 | 0.4717 | 250 | 13.1156 | | 4.6485 | 0.5660 | 300 | 15.8167 | | 1.8853 | 0.6604 | 350 | 12.1802 | | 1.821 | 0.7547 | 400 | 10.7766 | | 1.0218 | 0.8491 | 450 | 20.4883 | | 1.6077 | 0.9434 | 500 | 4.6230 | | 24.8611 | 1.0377 | 550 | 3.9979 | | 24.3324 | 1.1321 | 600 | 3.9896 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1