File size: 15,671 Bytes
b9cf533 39d6e56 b9cf533 0a76298 b9cf533 72d1bb7 b9cf533 72d1bb7 b9cf533 72d1bb7 b9cf533 72d1bb7 b9cf533 72d1bb7 b9cf533 72d1bb7 a2a0343 b9cf533 39d6e56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
---
library_name: transformers
base_model: ar5entum/bart_hin_eng_mt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: bart_rom_dev_tl
results: []
datasets:
- ar5entum/hindi-english-roman-devnagiri-transliteration-corpus
language:
- en
- hi
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_rom_dev_tl
This model is a fine-tuned version of [ar5entum/bart_hin_eng_mt](https://huggingface.co/ar5entum/bart_hin_eng_mt) on [ar5entum/hindi-english-roman-devnagiri-transliteration-corpus](https://huggingface.co/datasets/ar5entum/hindi-english-roman-devnagiri-transliteration-corpus/) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0998
- Bleu: 63.9396
- Gen Len: 114.6678
## Model description
This model is trained on transliteration dataset of roman and devnagiri sentences. The objective of this experiment was to correctly transliterate sentences based on their context.
## Inference and Evaluation
```python
import torch
import evaluate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
def batch_long_string(text):
batch = []
temp = []
count = 0
for word in text.split():
count+=len(word)
temp.append(word.strip())
if count > 40:
count = 0
batch.append(" ".join(temp).strip())
temp = []
if len(temp) > 0:
batch.append(" ".join(temp).strip())
return batch
class BartSmall():
def __init__(self, model_path = 'ar5entum/bart_rom_dev_tl', device = None):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
if not device:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = device
self.model.to(device)
def predict(self, input_text):
inputs = self.tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(self.device)
pred_ids = self.model.generate(inputs.input_ids, max_length=512, num_beams=4, early_stopping=True)
prediction = self.tokenizer.decode(pred_ids[0], skip_special_tokens=True)
return prediction
def predict_batch(self, input_texts, batch_size=32):
all_predictions = []
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
inputs = self.tokenizer(batch_texts, return_tensors="pt", max_length=512,
truncation=True, padding=True).to(self.device)
with torch.no_grad():
pred_ids = self.model.generate(inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True)
predictions = self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
all_predictions.extend(predictions)
return all_predictions
model = BartSmall(device='cuda')
input_texts = [
"the education researcher evaluated the effectiveness of online learning.",
"yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.",
"kuch ne kaha ye chand hai kuch ne kaha chehra ter"
]
ground_truths = [
"द एजुकेशन रिसर्चर इवैल्युएटेड द इफेक्टिवनेस ऑफ ऑनलाइन लर्निंग",
"यह अभिषेक जल, इक्षुरस, दुध, चावल का आटा, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर वृष्टि, आरती, सुगंधित कलश, महाशांतिधारा एवं महाअर्घ्य के साथ भगवान नेमिनाथ को समर्पित किया जाता है।",
"कुछ ने कहा ये चांद है कुछ ने कहा चेहरा तेरा"
]
import time
start = time.time()
def batch_long_string(text):
batch = []
temp = []
count = 0
for word in text.split():
count+=len(word)
temp.append(word.strip())
if count > 40:
count = 0
batch.append(" ".join(temp).strip())
temp = []
if len(temp) > 0:
batch.append(" ".join(temp).strip())
return batch
predictions = [" ".join([" ".join(model.predict_batch(batch, batch_size=len(batch))) for batch in batch_long_string(text)]) for text in input_texts]
end = time.time()
print("TIME: ", end-start)
for i in range(len(input_texts)):
print("‾‾‾‾‾‾‾‾‾‾‾‾")
print("Input text:\t", input_texts[i])
print("Prediction:\t", predictions[i])
print("Ground Truth:\t", ground_truths[i])
bleu = evaluate.load("bleu")
results = bleu.compute(predictions=predictions, references=ground_truths)
print(results)
# TIME: 9.683340787887573
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: the education researcher evaluated the effectiveness of online learning.
# Prediction: द एजुकेशन रिसर्चर इवैल्युएट्स द इफेक्टिंग ओफ ऑनाइनल लर्निंग
# Ground Truth: द एजुकेशन रिसर्चर इवैल्युएटेड द इफेक्टिवनेस ऑफ ऑनलाइन लर्निंग
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: yah abhishek jal, ikshuras, dudh, chaval ka ataa, laal chandan, haldi, ashtagandh, chandan chura, char kalash, kesar vrishti, aarti, sugandhit kalash, mahashantidhara evam mahaarghya ke saath bhagvan Neminath ko samarpit kiya jata hai.
# Prediction: यह अभिषेक जल, इक्षुरस, दुध, चावल का आता, लाल चन्दन, हालडी, अष्टगंध, चन्दन चुरा, चार कलाश, केसर वृष्टि, आर्ती, सुगंधित कलाश, महासंतिधारा एवं महार्घ्य के साथ भगवान नेमीनाथ को समर्पित किया जाता है।
# Ground Truth: यह अभिषेक जल, इक्षुरस, दुध, चावल का आटा, लाल चंदन, हल्दी, अष्टगंध, चंदन चुरा, चार कलश, केसर वृष्टि, आरती, सुगंधित कलश, महाशांतिधारा एवं महाअर्घ्य के साथ भगवान नेमिनाथ को समर्पित किया जाता है।
# ‾‾‾‾‾‾‾‾‾‾‾‾
# Input text: kuch ne kaha ye chand hai kuch ne kaha chehra ter
# Prediction: कुछ ने कहा ये चाँद है कुछ ने कहा चेहरा तेर
# Ground Truth: कुछ ने कहा ये चांद है कुछ ने कहा चेहरा तेरा
# {'bleu': 0.43170068926336663, 'precisions': [0.7538461538461538, 0.532258064516129, 0.3728813559322034, 0.23214285714285715], 'brevity_penalty': 1.0, 'length_ratio': 1.0, 'translation_length': 65, 'reference_length': 65}
```
## Training Procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 100
- eval_batch_size: 40
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 200
- total_eval_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 80
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 1.1468 | 1.0 | 71 | 1.0356 | 0.1783 | 127.8914 |
| 0.9193 | 2.0 | 142 | 0.7876 | 0.7522 | 120.098 |
| 0.714 | 3.0 | 213 | 0.5704 | 2.2388 | 116.7362 |
| 0.5751 | 4.0 | 284 | 0.4415 | 5.169 | 115.8671 |
| 0.4807 | 5.0 | 355 | 0.3694 | 9.2386 | 114.9026 |
| 0.4178 | 6.0 | 426 | 0.3220 | 13.4352 | 114.9967 |
| 0.3717 | 7.0 | 497 | 0.2920 | 16.5527 | 114.3776 |
| 0.3355 | 8.0 | 568 | 0.2728 | 18.8968 | 113.7553 |
| 0.3103 | 9.0 | 639 | 0.2502 | 22.688 | 114.4191 |
| 0.2916 | 10.0 | 710 | 0.2346 | 24.9505 | 114.3487 |
| 0.2696 | 11.0 | 781 | 0.2237 | 26.5227 | 114.2283 |
| 0.2583 | 12.0 | 852 | 0.2129 | 28.6141 | 114.0349 |
| 0.2438 | 13.0 | 923 | 0.2019 | 30.3471 | 114.3934 |
| 0.23 | 14.0 | 994 | 0.1972 | 31.3042 | 114.2145 |
| 0.2158 | 15.0 | 1065 | 0.1871 | 33.5445 | 114.5664 |
| 0.2108 | 16.0 | 1136 | 0.1811 | 34.5349 | 114.2928 |
| 0.2033 | 17.0 | 1207 | 0.1749 | 35.8154 | 114.4217 |
| 0.1901 | 18.0 | 1278 | 0.1706 | 36.853 | 114.55 |
| 0.1879 | 19.0 | 1349 | 0.1665 | 37.8791 | 114.4046 |
| 0.1772 | 20.0 | 1420 | 0.1605 | 39.197 | 114.6211 |
| 0.167 | 21.0 | 1491 | 0.1582 | 40.4274 | 114.5737 |
| 0.1678 | 22.0 | 1562 | 0.1549 | 40.4937 | 114.377 |
| 0.1621 | 23.0 | 1633 | 0.1508 | 42.0233 | 114.5882 |
| 0.1585 | 24.0 | 1704 | 0.1477 | 42.7916 | 114.573 |
| 0.1494 | 25.0 | 1775 | 0.1449 | 43.8836 | 114.6026 |
| 0.1477 | 26.0 | 1846 | 0.1424 | 44.1819 | 114.5197 |
| 0.1441 | 27.0 | 1917 | 0.1399 | 44.9919 | 114.6526 |
| 0.1379 | 28.0 | 1988 | 0.1375 | 45.8493 | 114.5329 |
| 0.1354 | 29.0 | 2059 | 0.1358 | 45.7367 | 114.4757 |
| 0.1325 | 30.0 | 2130 | 0.1330 | 46.9613 | 114.698 |
| 0.1288 | 31.0 | 2201 | 0.1315 | 47.5834 | 114.6257 |
| 0.1262 | 32.0 | 2272 | 0.1300 | 47.9596 | 114.5145 |
| 0.1232 | 33.0 | 2343 | 0.1277 | 48.2481 | 114.6474 |
| 0.1173 | 34.0 | 2414 | 0.1264 | 48.8469 | 114.623 |
| 0.1138 | 35.0 | 2485 | 0.1248 | 49.5157 | 114.6112 |
| 0.1126 | 36.0 | 2556 | 0.1237 | 49.6457 | 114.5947 |
| 0.1125 | 37.0 | 2627 | 0.1225 | 50.4627 | 114.6875 |
| 0.1101 | 38.0 | 2698 | 0.1207 | 50.9736 | 114.6388 |
| 0.1069 | 39.0 | 2769 | 0.1198 | 51.5928 | 114.6579 |
| 0.1035 | 40.0 | 2840 | 0.1185 | 52.0712 | 114.6132 |
| 0.096 | 41.0 | 2911 | 0.1175 | 52.6016 | 114.6441 |
| 0.0958 | 42.0 | 2982 | 0.1172 | 52.9595 | 114.6066 |
| 0.0967 | 43.0 | 3053 | 0.1160 | 52.6965 | 114.6461 |
| 0.0948 | 44.0 | 3124 | 0.1151 | 53.5073 | 114.6737 |
| 0.0957 | 45.0 | 3195 | 0.1144 | 53.5772 | 114.6822 |
| 0.0922 | 46.0 | 3266 | 0.1135 | 54.2084 | 114.6612 |
| 0.0903 | 47.0 | 3337 | 0.1127 | 54.2512 | 114.6368 |
| 0.088 | 48.0 | 3408 | 0.1119 | 55.1423 | 114.6947 |
| 0.0869 | 49.0 | 3479 | 0.1109 | 55.4669 | 114.6467 |
| 0.0849 | 50.0 | 3550 | 0.1110 | 55.7087 | 114.5855 |
| 0.0825 | 51.0 | 3621 | 0.1105 | 55.5851 | 114.6349 |
| 0.0818 | 52.0 | 3692 | 0.1097 | 57.163 | 114.727 |
| 0.0811 | 53.0 | 3763 | 0.1089 | 57.233 | 114.5928 |
| 0.0767 | 54.0 | 3834 | 0.1083 | 57.0785 | 114.6822 |
| 0.0751 | 55.0 | 3905 | 0.1081 | 57.4657 | 114.6487 |
| 0.0737 | 56.0 | 3976 | 0.1078 | 57.6215 | 114.848 |
| 0.0766 | 57.0 | 4047 | 0.1071 | 57.8275 | 114.5743 |
| 0.0766 | 58.0 | 4118 | 0.1064 | 58.1423 | 114.6309 |
| 0.0716 | 59.0 | 4189 | 0.1056 | 58.5167 | 114.7026 |
| 0.071 | 60.0 | 4260 | 0.1053 | 59.226 | 114.627 |
| 0.0715 | 61.0 | 4331 | 0.1054 | 59.1511 | 114.6697 |
| 0.0709 | 62.0 | 4402 | 0.1046 | 59.3669 | 114.6816 |
| 0.0703 | 63.0 | 4473 | 0.1046 | 59.418 | 114.6171 |
| 0.0686 | 64.0 | 4544 | 0.1039 | 60.1412 | 114.6961 |
| 0.066 | 65.0 | 4615 | 0.1037 | 60.4565 | 114.7559 |
| 0.0647 | 66.0 | 4686 | 0.1039 | 59.9588 | 114.6382 |
| 0.0668 | 67.0 | 4757 | 0.1030 | 60.5026 | 114.7447 |
| 0.0649 | 68.0 | 4828 | 0.1035 | 60.2735 | 114.6099 |
| 0.0637 | 69.0 | 4899 | 0.1032 | 60.6524 | 114.6171 |
| 0.0641 | 70.0 | 4970 | 0.1029 | 60.7721 | 114.7461 |
| 0.0639 | 71.0 | 5041 | 0.1025 | 61.1837 | 114.6901 |
| 0.062 | 72.0 | 5112 | 0.1024 | 61.3516 | 114.7447 |
| 0.0588 | 73.0 | 5183 | 0.1025 | 61.3766 | 114.6539 |
| 0.0609 | 74.0 | 5254 | 0.1019 | 61.8364 | 114.7467 |
| 0.0592 | 75.0 | 5325 | 0.1020 | 61.7948 | 114.7072 |
| 0.0604 | 76.0 | 5396 | 0.1019 | 61.8981 | 114.6921 |
| 0.0593 | 77.0 | 5467 | 0.1013 | 61.9623 | 114.6921 |
| 0.057 | 78.0 | 5538 | 0.1013 | 62.2082 | 114.6553 |
| 0.0595 | 79.0 | 5609 | 0.1011 | 62.3174 | 114.6684 |
| 0.0565 | 80.0 | 5680 | 0.1010 | 62.1364 | 114.6158 |
| 0.0592 | 81.0 | 5751 | 0.1009 | 62.6892 | 114.6671 |
| 0.0563 | 82.0 | 5822 | 0.1010 | 62.431 | 114.7099 |
| 0.0544 | 83.0 | 5893 | 0.1007 | 62.78 | 114.6579 |
| 0.0546 | 84.0 | 5964 | 0.1009 | 62.8921 | 114.6112 |
| 0.0558 | 85.0 | 6035 | 0.1007 | 62.7137 | 114.7289 |
| 0.0529 | 86.0 | 6106 | 0.1008 | 62.859 | 114.6401 |
| 0.0549 | 87.0 | 6177 | 0.1003 | 63.1903 | 114.6934 |
| 0.0544 | 88.0 | 6248 | 0.1003 | 63.2949 | 114.6888 |
| 0.0535 | 89.0 | 6319 | 0.1005 | 63.3252 | 114.6546 |
| 0.0547 | 90.0 | 6390 | 0.0999 | 63.3835 | 114.7 |
| 0.0533 | 91.0 | 6461 | 0.0999 | 63.5284 | 114.6875 |
| 0.0523 | 92.0 | 6532 | 0.1000 | 63.6207 | 114.7145 |
| 0.0533 | 93.0 | 6603 | 0.0999 | 63.5598 | 114.723 |
| 0.0545 | 94.0 | 6674 | 0.0999 | 63.6451 | 114.7303 |
| 0.052 | 95.0 | 6745 | 0.0999 | 63.6712 | 114.7283 |
| 0.0527 | 96.0 | 6816 | 0.1001 | 63.7187 | 114.6711 |
| 0.0511 | 97.0 | 6887 | 0.0999 | 63.9161 | 114.6671 |
| 0.0531 | 98.0 | 6958 | 0.0999 | 63.8758 | 114.6645 |
| 0.0539 | 99.0 | 7029 | 0.0999 | 63.9162 | 114.6566 |
| 0.0533 | 100.0 | 7100 | 0.0998 | 63.9396 | 114.6678 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |