File size: 1,788 Bytes
2105344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
base_model: danasone/bart-small-ru-en
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: bart_eng_hin_mt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_eng_hin_mt

This model is a fine-tuned version of [danasone/bart-small-ru-en](https://huggingface.co/danasone/bart-small-ru-en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3398
- Bleu: 10.015
- Gen Len: 123.5141

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 300
- eval_batch_size: 20
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 2400
- total_eval_batch_size: 160
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 15.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.5522        | 1.0   | 689  | 0.5343          | 3.4797 | 123.3969 |
| 0.3988        | 2.0   | 1378 | 0.4020          | 7.5644 | 123.3578 |
| 0.3496        | 3.0   | 2067 | 0.3601          | 9.3506 | 123.4641 |
| 0.3191        | 4.0   | 2756 | 0.3398          | 10.015 | 123.5141 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1