File size: 4,824 Bytes
46adadf 969f748 76840a3 46adadf 969f748 76840a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
language:
- en
license: mit
model-index:
- name: mistral_tv-neural-marconroni
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.2
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.07
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.03
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aqweteddy/mistral_tv-neural-marconroni
name: Open LLM Leaderboard
---
## Chat Vector
CHAT VECTOR: A SIMPLE APPROACH TO EQUIP LLMS WITH NEW LANGUAGE CHAT CAPABILITIES
https://arxiv.org/pdf/2310.04799.pdf
With the advancements in conversational AI, such as ChatGPT, this paper focuses on exploring developing Large Language Models (LLMs) for non-English languages, especially emphasizing alignment with human preferences. We introduce a computationally efficient method, leveraging “chat vector,” to synergize pre-existing knowledge and behaviors in LLMs, restructuring the conventional training paradigm from continual pretrain
SFT
RLHF to continual pretrain + chat. Our empirical studies, primarily focused on Traditional Chinese, employ LLaMA2 as the base model and acquire the chat vector by subtracting the pre-trained weights, LLaMA2, from the weights of LLaMA2-chat. Evaluating from three distinct facets, which are toxicity, ability of instruction following and multi-turn dialogue demonstrates the chat vector's superior efficacy in “chatting”. To confirm the adaptability of our approach, we extend our experiments to include models pre-trained in both Korean and Simplified Chinese, illustrating the versatility of our methodology. Overall, we present a significant solution in aligning LLMs with human preferences efficiently across various languages, accomplished by the chat vector.
## Merged LM
* mistral 7b
* chat vector
* neural-chat
* marconroni
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aqweteddy__mistral_tv-neural-marconroni)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.27|
|AI2 Reasoning Challenge (25-Shot)|69.20|
|HellaSwag (10-Shot) |86.26|
|MMLU (5-Shot) |65.07|
|TruthfulQA (0-shot) |60.03|
|Winogrande (5-shot) |80.90|
|GSM8k (5-shot) |66.19|
|