yizheapple commited on
Commit
0598629
·
verified ·
1 Parent(s): 27b4b7f

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|beginoftext|>": 151665,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|dlm_pad|>": 151667,
8
+ "<|endoftext|>": 151643,
9
+ "<|file_sep|>": 151664,
10
+ "<|fim_middle|>": 151660,
11
+ "<|fim_pad|>": 151662,
12
+ "<|fim_prefix|>": 151659,
13
+ "<|fim_suffix|>": 151661,
14
+ "<|im_end|>": 151645,
15
+ "<|im_start|>": 151644,
16
+ "<|image_pad|>": 151655,
17
+ "<|mask|>": 151666,
18
+ "<|object_ref_end|>": 151647,
19
+ "<|object_ref_start|>": 151646,
20
+ "<|quad_end|>": 151651,
21
+ "<|quad_start|>": 151650,
22
+ "<|repo_name|>": 151663,
23
+ "<|video_pad|>": 151656,
24
+ "<|vision_end|>": 151653,
25
+ "<|vision_pad|>": 151654,
26
+ "<|vision_start|>": 151652
27
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DreamModel"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_dream.DreamConfig",
8
+ "AutoModel": "modeling_dream.DreamModel"
9
+ },
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151643,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 3584,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 18944,
16
+ "mask_token_id": 151666,
17
+ "max_position_embeddings": 131072,
18
+ "max_window_layers": 28,
19
+ "model_type": "Dream",
20
+ "num_attention_heads": 28,
21
+ "num_hidden_layers": 28,
22
+ "num_key_value_heads": 4,
23
+ "pad_token_id": 151643,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.51.3",
31
+ "use_cache": false,
32
+ "use_mrope": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 152064
35
+ }
configuration_dream.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Dream model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class DreamConfig(PretrainedConfig):
26
+ model_type = "Dream"
27
+ keys_to_ignore_at_inference = ["past_key_values"]
28
+
29
+ def __init__(
30
+ self,
31
+ vocab_size=151936,
32
+ hidden_size=4096,
33
+ intermediate_size=22016,
34
+ num_hidden_layers=32,
35
+ num_attention_heads=32,
36
+ num_key_value_heads=32,
37
+ hidden_act="silu",
38
+ max_position_embeddings=32768,
39
+ initializer_range=0.02,
40
+ rms_norm_eps=1e-6,
41
+ use_cache=False, # cache not used in diffusion
42
+ tie_word_embeddings=False,
43
+ rope_theta=10000.0,
44
+ rope_scaling=None,
45
+ use_sliding_window=False,
46
+ sliding_window=4096,
47
+ max_window_layers=28,
48
+ attention_dropout=0.0,
49
+ mask_token_id=151666,
50
+ pad_token_id=151643,
51
+ **kwargs,
52
+ ):
53
+ self.vocab_size = vocab_size
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.hidden_size = hidden_size
56
+ self.intermediate_size = intermediate_size
57
+ self.num_hidden_layers = num_hidden_layers
58
+ self.num_attention_heads = num_attention_heads
59
+ self.use_sliding_window = use_sliding_window
60
+ self.sliding_window = sliding_window if use_sliding_window else None
61
+ self.max_window_layers = max_window_layers
62
+
63
+ # for backward compatibility
64
+ if num_key_value_heads is None:
65
+ num_key_value_heads = num_attention_heads
66
+
67
+ self.num_key_value_heads = num_key_value_heads
68
+ self.hidden_act = hidden_act
69
+ self.initializer_range = initializer_range
70
+ self.rms_norm_eps = rms_norm_eps
71
+ self.use_cache = use_cache
72
+ self.rope_theta = rope_theta
73
+ self.rope_scaling = rope_scaling
74
+ self.attention_dropout = attention_dropout
75
+ # Validate the correctness of rotary position embeddings parameters
76
+ # BC: if there is a 'type' field, move it to 'rope_type'.
77
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
78
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
79
+ rope_config_validation(self)
80
+
81
+ super().__init__(
82
+ tie_word_embeddings=tie_word_embeddings,
83
+ **kwargs,
84
+ )
85
+ self.mask_token_id = mask_token_id
86
+ self.pad_token_id = pad_token_id
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "alg": "origin",
4
+ "alg_temp": null,
5
+ "bos_token_id": 151643,
6
+ "eos_token_id": 151643,
7
+ "eps": 0.001,
8
+ "mask_token_id": null,
9
+ "output_history": false,
10
+ "pad_token_id": 151643,
11
+ "steps": 512,
12
+ "temperature": 0.0,
13
+ "top_k": null,
14
+ "top_p": null,
15
+ "transformers_version": "4.51.3"
16
+ }
generation_utils.py ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warnings
17
+ import copy
18
+ from dataclasses import dataclass
19
+ from typing import Any, Dict, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.distributions as dists
23
+ from torch.nn import functional as F
24
+ from transformers import __version__
25
+ from transformers.generation.configuration_utils import (
26
+ GenerationConfig
27
+ )
28
+ from transformers.utils import (
29
+ ModelOutput,
30
+ is_torchdynamo_compiling,
31
+ logging,
32
+ )
33
+
34
+ logger = logging.get_logger(__name__)
35
+
36
+
37
+ def top_p_logits(logits, top_p=None):
38
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
39
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
40
+ sorted_indices_to_remove = cumulative_probs > top_p
41
+ # Shift the indices to the right to keep the first token above the threshold
42
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
43
+ sorted_indices_to_remove[..., 0] = 0
44
+
45
+ mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
46
+ mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
47
+ logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
48
+ return logits
49
+
50
+ def top_k_logits(logits, top_k=None):
51
+ top_k = min(top_k, logits.size(-1)) # Safety check
52
+ # Remove all tokens with a probability less than the last token of the top-k
53
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
54
+ logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
55
+ return logits
56
+
57
+
58
+ def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
59
+
60
+ if temperature > 0:
61
+ logits = logits / temperature
62
+ if top_p is not None and top_p < 1:
63
+ logits = top_p_logits(logits, top_p)
64
+ if top_k is not None:
65
+ logits = top_k_logits(logits, top_k)
66
+ probs = torch.softmax(logits, dim=-1)
67
+
68
+ if temperature > 0:
69
+ try:
70
+ x0 = dists.Categorical(probs=probs).sample()
71
+ confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
72
+ except:
73
+ confidence, x0 = probs.max(dim=-1)
74
+ else:
75
+ confidence, x0 = probs.max(dim=-1)
76
+
77
+ if margin_confidence:
78
+ sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
79
+ # Extract top1 and top2 probabilities
80
+ top1_probs = sorted_probs[:, 0]
81
+ top2_probs = sorted_probs[:, 1]
82
+ # Calculate confidence as top1 - top2
83
+ confidence = top1_probs - top2_probs
84
+
85
+ if neg_entropy:
86
+ epsilon = 1e-10
87
+ log_probs = torch.log(probs + epsilon)
88
+ confidence = torch.sum(probs * log_probs, dim=-1)
89
+
90
+ return confidence, x0
91
+
92
+
93
+ @dataclass
94
+ class DreamModelOutput(ModelOutput):
95
+ sequences: torch.LongTensor = None
96
+ history: Optional[Tuple[torch.FloatTensor]] = None
97
+
98
+
99
+ class DreamGenerationConfig(GenerationConfig):
100
+ def __init__(self, **kwargs):
101
+ self.temperature: float = kwargs.pop("temperature", 0.0)
102
+ self.top_p: Optional[float] = kwargs.pop("top_p", None)
103
+ self.top_k: Optional[int] = kwargs.pop("top_k", None)
104
+ self.max_length = kwargs.pop("max_length", 20)
105
+ self.max_new_tokens = kwargs.pop("max_new_tokens", None)
106
+ # diffusion specific params
107
+ self.eps: float = kwargs.pop("eps", 1e-3)
108
+ self.steps: int = kwargs.pop("steps", 512)
109
+ self.alg: str = kwargs.pop("alg", 'origin')
110
+ self.alg_temp: Optional[float] = kwargs.pop("alg_temp", None)
111
+
112
+ # Parameters that define the output variables of `generate`
113
+ self.num_return_sequences: int = kwargs.pop("num_return_sequences", 1)
114
+ self.return_dict_in_generate: bool = kwargs.pop("return_dict_in_generate", False)
115
+ self.output_history: bool = kwargs.pop("output_history", False)
116
+
117
+ # Special tokens that can be used at generation time
118
+ self.mask_token_id = kwargs.pop("mask_token_id", None)
119
+ self.pad_token_id = kwargs.pop("pad_token_id", None)
120
+ self.bos_token_id = kwargs.pop("bos_token_id", None)
121
+ self.eos_token_id = kwargs.pop("eos_token_id", None)
122
+
123
+ # Wild card
124
+ self.generation_kwargs = kwargs.pop("generation_kwargs", {})
125
+
126
+ # The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
127
+ # interface.
128
+ self._from_model_config = kwargs.pop("_from_model_config", False)
129
+ self._commit_hash = kwargs.pop("_commit_hash", None)
130
+ self.transformers_version = kwargs.pop("transformers_version", __version__)
131
+
132
+ # Additional attributes without default values
133
+ if not self._from_model_config:
134
+ # we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
135
+ # model's default configuration file
136
+ for key, value in kwargs.items():
137
+ try:
138
+ setattr(self, key, value)
139
+ except AttributeError as err:
140
+ logger.error(f"Can't set {key} with value {value} for {self}")
141
+ raise err
142
+
143
+ # Validate the values of the attributes
144
+ self.validate(is_init=True)
145
+
146
+ def validate(self, is_init=False, strict=True):
147
+ pass
148
+
149
+ class DreamGenerationMixin:
150
+ @staticmethod
151
+ def _expand_inputs_for_generation(
152
+ expand_size: int = 1,
153
+ input_ids: Optional[torch.LongTensor] = None,
154
+ attention_mask: Optional[torch.LongTensor] = None
155
+ ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
156
+ """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
157
+ # Do not call torch.repeat_interleave if expand_size is 1 because it clones
158
+ # the input tensor and thus requires more memory although no change is applied
159
+ if expand_size == 1:
160
+ return input_ids, attention_mask
161
+ if input_ids is not None:
162
+ input_ids = input_ids.repeat_interleave(expand_size, dim=0)
163
+ if attention_mask is not None:
164
+ attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
165
+ return input_ids, attention_mask
166
+
167
+ def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
168
+ """Performs validation related to the resulting generated length"""
169
+
170
+ # Can't throw warnings/exceptions during compilation
171
+ if is_torchdynamo_compiling():
172
+ return
173
+
174
+ # 1. Max length warnings related to poor parameterization
175
+ if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
176
+ # 20 is the default max_length of the generation config
177
+ warnings.warn(
178
+ f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
179
+ "generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
180
+ "generation.",
181
+ UserWarning,
182
+ )
183
+ if input_ids_length >= generation_config.max_length:
184
+ input_ids_string = "input_ids"
185
+ raise ValueError(
186
+ f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
187
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
188
+ " increasing `max_length` or, better yet, setting `max_new_tokens`."
189
+ )
190
+
191
+ def _prepare_generated_length(
192
+ self,
193
+ generation_config,
194
+ has_default_max_length,
195
+ input_ids_length,
196
+ ):
197
+ """Prepared max and min length in generation configs to avoid clashes between similar attributes"""
198
+
199
+ if generation_config.max_new_tokens is not None:
200
+ if not has_default_max_length and generation_config.max_length is not None:
201
+ logger.warning(
202
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
203
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
204
+ "Please refer to the documentation for more information. "
205
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
206
+ )
207
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_length
208
+
209
+ elif has_default_max_length:
210
+ if generation_config.max_length == DreamGenerationConfig().max_length:
211
+ generation_config.max_length = generation_config.max_length + input_ids_length
212
+ max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
213
+ if max_position_embeddings is not None:
214
+ generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
215
+
216
+ return generation_config
217
+
218
+ def _prepare_generation_config(
219
+ self, generation_config: Optional[DreamGenerationConfig], **kwargs: Dict
220
+ ) -> DreamGenerationConfig:
221
+ """
222
+ Prepares the base generation config, then applies any generation configuration options from kwargs. This
223
+ function handles retrocompatibility with respect to configuration files.
224
+ """
225
+ # priority: `generation_config` argument > `model.generation_config` (the default generation config)
226
+ using_model_generation_config = False
227
+ if generation_config is None:
228
+ generation_config = DreamGenerationConfig.from_model_config(self.config)
229
+ using_model_generation_config = True
230
+
231
+ # `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
232
+ # will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
233
+ # exception will be raised in `_validate_model_kwargs`
234
+ if not is_torchdynamo_compiling():
235
+ generation_config = copy.deepcopy(generation_config)
236
+ _kwargs = generation_config.update(**kwargs)
237
+ # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
238
+ if not using_model_generation_config:
239
+ if generation_config.bos_token_id is None:
240
+ generation_config.bos_token_id = self.generation_config.bos_token_id
241
+ if generation_config.eos_token_id is None:
242
+ generation_config.eos_token_id = self.generation_config.eos_token_id
243
+ if generation_config.pad_token_id is None:
244
+ generation_config.pad_token_id = self.generation_config.pad_token_id
245
+ if generation_config.mask_token_id is None:
246
+ generation_config.mask_token_id = self.generation_config.mask_token_id
247
+
248
+ return generation_config
249
+
250
+ def _prepare_special_tokens(
251
+ self,
252
+ generation_config: DreamGenerationConfig,
253
+ device: Optional[Union[torch.device, str]] = None,
254
+ ):
255
+ """
256
+ Prepares the special tokens for generation, overwriting the generation config with their processed versions
257
+ converted to tensor.
258
+ Note that `generation_config` is changed in place and stops being serializable after this method is called.
259
+ That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
260
+ function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
261
+ """
262
+
263
+ # Convert special tokens to tensors
264
+ def _tensor_or_none(token, device=None):
265
+ if token is None:
266
+ return token
267
+
268
+ device = device if device is not None else self.device
269
+ if isinstance(token, torch.Tensor):
270
+ return token.to(device)
271
+ return torch.tensor(token, device=device, dtype=torch.long)
272
+
273
+ bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
274
+ eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
275
+ pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
276
+ mask_token_tensor = _tensor_or_none(generation_config.mask_token_id, device=device)
277
+
278
+ # We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
279
+ if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
280
+ eos_token_tensor = eos_token_tensor.unsqueeze(0)
281
+
282
+ # Set pad token if unset (and there are conditions to do so)
283
+ if pad_token_tensor is None and eos_token_tensor is not None:
284
+ pad_token_tensor = eos_token_tensor[0]
285
+ logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
286
+
287
+ # Update generation config with the updated special tokens tensors
288
+ # NOTE: this must be written into a different attribute name than the one holding the original special tokens
289
+ # (in their non-tensor form), in order to enable end-to-end compilation. See
290
+ # https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
291
+ generation_config._bos_token_tensor = bos_token_tensor
292
+ generation_config._eos_token_tensor = eos_token_tensor
293
+ generation_config._pad_token_tensor = pad_token_tensor
294
+ generation_config._mask_token_tensor = mask_token_tensor
295
+
296
+ @torch.no_grad()
297
+ def diffusion_generate(
298
+ self,
299
+ inputs: Optional[torch.Tensor] = None,
300
+ generation_config: Optional[DreamGenerationConfig] = None,
301
+ **kwargs,
302
+ ) -> Union[DreamModelOutput, torch.LongTensor]:
303
+ # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
304
+ generation_config = self._prepare_generation_config(generation_config, **kwargs)
305
+ generation_tokens_hook_func = kwargs.pop("generation_tokens_hook_func", lambda step, x, logits: x)
306
+ generation_logits_hook_func = kwargs.pop("generation_logits_hook_func", lambda step, x, logits: logits)
307
+
308
+ # 2. Define model inputs
309
+ assert inputs is not None
310
+ input_ids = inputs
311
+ device = input_ids.device
312
+ attention_mask = kwargs.pop("attention_mask", None)
313
+ self._prepare_special_tokens(generation_config, device=device)
314
+
315
+ # 3. Prepare `max_length`.
316
+ input_ids_length = input_ids.shape[-1]
317
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
318
+ generation_config = self._prepare_generated_length(
319
+ generation_config=generation_config,
320
+ has_default_max_length=has_default_max_length,
321
+ input_ids_length=input_ids_length,
322
+ )
323
+
324
+ self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
325
+
326
+ # 4. Check input_ids
327
+ if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
328
+ warnings.warn(
329
+ "You are calling .generate() with the `input_ids` being on a device type different"
330
+ f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
331
+ f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
332
+ " Please make sure that you have put `input_ids` to the"
333
+ f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
334
+ " running `.generate()`.",
335
+ UserWarning,
336
+ )
337
+ if (
338
+ hasattr(generation_config, "pad_token_id") and
339
+ torch.any(input_ids == generation_config.pad_token_id) and
340
+ attention_mask is None
341
+ ):
342
+ warnings.warn(
343
+ "Padding was detected but no attention mask is passed here. For correct "
344
+ "generation results, please set `attention_mask` when batch-padding inputs.",
345
+ UserWarning,
346
+ )
347
+
348
+ input_ids, attention_mask = self._expand_inputs_for_generation(
349
+ expand_size=generation_config.num_return_sequences,
350
+ input_ids=input_ids,
351
+ attention_mask=attention_mask
352
+ )
353
+
354
+ result = self._sample(
355
+ input_ids,
356
+ attention_mask=attention_mask,
357
+ generation_config=generation_config,
358
+ generation_tokens_hook_func=generation_tokens_hook_func,
359
+ generation_logits_hook_func=generation_logits_hook_func
360
+ )
361
+ return result
362
+
363
+ def _sample(
364
+ self,
365
+ input_ids: torch.LongTensor,
366
+ attention_mask: Optional[torch.LongTensor],
367
+ generation_config: DreamGenerationConfig,
368
+ generation_tokens_hook_func,
369
+ generation_logits_hook_func
370
+ ) -> Union[DreamModelOutput, torch.LongTensor]:
371
+ # init values
372
+ output_history = generation_config.output_history
373
+ return_dict_in_generate = generation_config.return_dict_in_generate
374
+ max_length = generation_config.max_length
375
+ mask_token_id = generation_config.mask_token_id
376
+ steps = generation_config.steps
377
+ eps = 1e-12
378
+ alg = generation_config.alg
379
+ alg_temp = generation_config.alg_temp
380
+ temperature = generation_config.temperature
381
+ top_p = generation_config.top_p
382
+ top_k = generation_config.top_k
383
+
384
+ histories = [] if (return_dict_in_generate and output_history) else None
385
+
386
+ # pad input_ids to max_length
387
+ x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
388
+
389
+ if attention_mask is not None and torch.any(attention_mask == 0.0):
390
+ # we do not mask the [MASK] tokens so value = 1.0
391
+ attention_mask = F.pad(attention_mask, (0, max_length - attention_mask.shape[1]), value=1.0)
392
+ tok_idx = attention_mask.long().cumsum(-1) - 1
393
+ tok_idx.masked_fill_(attention_mask == 0, 1)
394
+ # attention_mask is of shape [B, N]
395
+ # broadcast to [B, 1, N, N]
396
+ attention_mask = torch.logical_and(
397
+ attention_mask.unsqueeze(1).unsqueeze(-2),
398
+ attention_mask.unsqueeze(1).unsqueeze(-1),
399
+ )
400
+ else:
401
+ tok_idx = None
402
+ attention_mask = "full"
403
+
404
+ timesteps = torch.linspace(1, eps, steps + 1, device=x.device)
405
+
406
+ # this allows user-defined token control of the intermediate steps
407
+ x = generation_tokens_hook_func(None, x, None)
408
+ for i in range(steps):
409
+ mask_index = (x == mask_token_id)
410
+ logits = self(x, attention_mask, tok_idx).logits
411
+ logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
412
+
413
+ # this allows user-defined logits control of the intermediate steps
414
+ logits = generation_logits_hook_func(i, x, logits)
415
+
416
+ mask_logits = logits[mask_index]
417
+ t = timesteps[i]
418
+ s = timesteps[i + 1]
419
+
420
+ if alg == 'origin':
421
+ p_transfer = 1 - s / t if i < steps - 1 else 1
422
+ x0 = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
423
+ transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer
424
+ _, x0[transfer_index_t_s]= sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k)
425
+ x[mask_index] = x0.clone()
426
+ else:
427
+ if alg == 'maskgit_plus':
428
+ confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k)
429
+ elif alg == 'topk_margin':
430
+ confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True)
431
+ elif alg == 'entropy':
432
+ confidence, x0 = sample_tokens(mask_logits, temperature, top_p=top_p, top_k=top_k, neg_entropy=True)
433
+ else:
434
+ raise RuntimeError(f"Unknown alg: {alg}")
435
+ num_mask_token = mask_index.sum() / mask_index.shape[0]
436
+ number_transfer_tokens = int(num_mask_token * (1 - s / t)) if i < steps - 1 else int(num_mask_token)
437
+ full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=logits.dtype)
438
+ full_confidence[mask_index] = confidence
439
+ if number_transfer_tokens > 0:
440
+ if alg_temp is None or alg_temp == 0:
441
+ _, transfer_index = torch.topk(full_confidence, number_transfer_tokens)
442
+ else:
443
+ full_confidence = full_confidence / alg_temp
444
+ full_confidence = F.softmax(full_confidence, dim=-1)
445
+ transfer_index = torch.multinomial(full_confidence, num_samples=number_transfer_tokens)
446
+ x_ = torch.zeros_like(x, device=self.device, dtype=torch.long) + mask_token_id
447
+ x_[mask_index] = x0.clone()
448
+ row_indices = torch.arange(x.size(0), device=self.device).unsqueeze(1).expand_as(transfer_index)
449
+ x[row_indices,transfer_index] = x_[row_indices,transfer_index]
450
+
451
+ # this allows user-defined token control of the intermediate steps
452
+ x = generation_tokens_hook_func(i, x, logits)
453
+
454
+ if histories is not None:
455
+ histories.append(x.clone())
456
+
457
+ if return_dict_in_generate:
458
+ return DreamModelOutput(
459
+ sequences=x,
460
+ history=histories,
461
+ )
462
+ else:
463
+ return x
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bd1bb0b8c6077caa0f0602ecfdadc8cf4cb48e8ce1fccd06512cf3f09004e8b
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ba0c786759e4ae44a7d82f63f24181fbba61ad511380b9e63e18e5326d51a38
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:806190d071b494555bf495e1618cb9cc8f7105b9197a0add84bd4e73173f32c6
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59be4628b4651b505b7619d726703443eaffeb5b835f5a8e415902aaa442171b
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
modeling_dream.py ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT and Qwen implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT and Qwen used by the Meta AI and Qwen team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Dream model."""
21
+
22
+ import math
23
+ from typing import List, Optional, Tuple, Union
24
+ import os
25
+ import torch
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutput,
33
+ MaskedLMOutput,
34
+ )
35
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ )
44
+ from transformers import PretrainedConfig
45
+ from .configuration_dream import DreamConfig
46
+ from .generation_utils import DreamGenerationMixin, DreamGenerationConfig
47
+
48
+ if is_flash_attn_2_available():
49
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+
55
+ _CHECKPOINT_FOR_DOC = "Dream-7B"
56
+ _CONFIG_FOR_DOC = "DreamConfig"
57
+
58
+
59
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Dream
60
+ class DreamRMSNorm(nn.Module):
61
+ def __init__(self, hidden_size, eps=1e-6):
62
+ """
63
+ DreamRMSNorm is equivalent to T5LayerNorm
64
+ """
65
+ super().__init__()
66
+ self.weight = nn.Parameter(torch.ones(hidden_size))
67
+ self.variance_epsilon = eps
68
+
69
+ def forward(self, hidden_states):
70
+ input_dtype = hidden_states.dtype
71
+ hidden_states = hidden_states.to(torch.float32)
72
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
73
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
74
+ return self.weight * hidden_states.to(input_dtype)
75
+
76
+ def extra_repr(self):
77
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
78
+
79
+
80
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Dream
81
+ class DreamRotaryEmbedding(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=None,
85
+ max_position_embeddings=2048,
86
+ base=10000,
87
+ device=None,
88
+ scaling_factor=1.0,
89
+ rope_type="default",
90
+ config: Optional[DreamConfig] = None,
91
+ ):
92
+ super().__init__()
93
+ # TODO (joao): remove the `if` below, only used for BC
94
+ self.rope_kwargs = {}
95
+ if config is None:
96
+ logger.warning_once(
97
+ "`DreamRotaryEmbedding` can now be fully parameterized by passing the model config through the "
98
+ "`config` argument. All other arguments will be removed in v4.46"
99
+ )
100
+ self.rope_kwargs = {
101
+ "rope_type": rope_type,
102
+ "factor": scaling_factor,
103
+ "dim": dim,
104
+ "base": base,
105
+ "max_position_embeddings": max_position_embeddings,
106
+ }
107
+ self.rope_type = rope_type
108
+ self.max_seq_len_cached = max_position_embeddings
109
+ self.original_max_seq_len = max_position_embeddings
110
+ else:
111
+ # BC: "rope_type" was originally "type"
112
+ if config.rope_scaling is not None:
113
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
114
+ else:
115
+ self.rope_type = "default"
116
+ self.max_seq_len_cached = config.max_position_embeddings
117
+ self.original_max_seq_len = config.max_position_embeddings
118
+
119
+ self.config = config
120
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
121
+
122
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
123
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
124
+ self.original_inv_freq = self.inv_freq
125
+
126
+ def reset_parameters(self):
127
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs)
128
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
129
+ self.original_inv_freq = self.inv_freq
130
+
131
+
132
+ def _dynamic_frequency_update(self, position_ids, device):
133
+ """
134
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
135
+ 1 - growing beyond the cached sequence length (allow scaling)
136
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
137
+ """
138
+ seq_len = torch.max(position_ids) + 1
139
+ if seq_len > self.max_seq_len_cached: # growth
140
+ inv_freq, self.attention_scaling = self.rope_init_fn(
141
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
142
+ )
143
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
144
+ self.max_seq_len_cached = seq_len
145
+
146
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
147
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
148
+ self.max_seq_len_cached = self.original_max_seq_len
149
+
150
+ @torch.no_grad()
151
+ def forward(self, x, position_ids):
152
+ if "dynamic" in self.rope_type:
153
+ self._dynamic_frequency_update(position_ids, device=x.device)
154
+
155
+ # Core RoPE block
156
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
157
+ position_ids_expanded = position_ids[:, None, :].float()
158
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
159
+ device_type = x.device.type
160
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
161
+ with torch.autocast(device_type=device_type, enabled=False):
162
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
163
+ emb = torch.cat((freqs, freqs), dim=-1)
164
+ cos = emb.cos()
165
+ sin = emb.sin()
166
+
167
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
168
+ cos = cos * self.attention_scaling
169
+ sin = sin * self.attention_scaling
170
+
171
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
172
+
173
+
174
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
175
+ def rotate_half(x):
176
+ """Rotates half the hidden dims of the input."""
177
+ x1 = x[..., : x.shape[-1] // 2]
178
+ x2 = x[..., x.shape[-1] // 2 :]
179
+ return torch.cat((-x2, x1), dim=-1)
180
+
181
+
182
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
183
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
184
+ """Applies Rotary Position Embedding to the query and key tensors.
185
+
186
+ Args:
187
+ q (`torch.Tensor`): The query tensor.
188
+ k (`torch.Tensor`): The key tensor.
189
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
190
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
191
+ position_ids (`torch.Tensor`, *optional*):
192
+ Deprecated and unused.
193
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
194
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
195
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
196
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
197
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
198
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
199
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
200
+ Returns:
201
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
202
+ """
203
+ cos = cos.unsqueeze(unsqueeze_dim)
204
+ sin = sin.unsqueeze(unsqueeze_dim)
205
+ q_embed = (q * cos) + (rotate_half(q) * sin)
206
+ k_embed = (k * cos) + (rotate_half(k) * sin)
207
+ return q_embed, k_embed
208
+
209
+
210
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Dream
211
+ class DreamMLP(nn.Module):
212
+ def __init__(self, config):
213
+ super().__init__()
214
+ self.hidden_size = config.hidden_size
215
+ self.intermediate_size = config.intermediate_size
216
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
217
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
218
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
219
+ self.act_fn = ACT2FN[config.hidden_act]
220
+
221
+ def forward(self, hidden_state):
222
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
223
+
224
+
225
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
226
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
227
+ """
228
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
229
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
230
+ """
231
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
232
+ if n_rep == 1:
233
+ return hidden_states
234
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
235
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
236
+
237
+
238
+ class DreamAttention(nn.Module):
239
+ """
240
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
241
+ and "Generating Long Sequences with Sparse Transformers".
242
+ """
243
+
244
+ def __init__(self, config: DreamConfig, layer_idx: Optional[int] = None):
245
+ super().__init__()
246
+ self.config = config
247
+ self.layer_idx = layer_idx
248
+ if layer_idx is None:
249
+ logger.warning_once(
250
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
251
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
252
+ "when creating this class."
253
+ )
254
+
255
+ self.hidden_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+ self.num_key_value_heads = config.num_key_value_heads
259
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
260
+ self.max_position_embeddings = config.max_position_embeddings
261
+ self.rope_theta = config.rope_theta
262
+ self.is_causal = False
263
+ self.attention_dropout = config.attention_dropout
264
+
265
+ if (self.head_dim * self.num_heads) != self.hidden_size:
266
+ raise ValueError(
267
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
268
+ f" and `num_heads`: {self.num_heads})."
269
+ )
270
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
271
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
272
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
273
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
274
+
275
+ self.rotary_emb = DreamRotaryEmbedding(config=self.config)
276
+
277
+ def forward(
278
+ self,
279
+ hidden_states: torch.Tensor,
280
+ attention_mask: Optional[torch.Tensor] = None,
281
+ position_ids: Optional[torch.LongTensor] = None,
282
+ past_key_value: Optional[Cache] = None,
283
+ output_attentions: bool = False,
284
+ use_cache: bool = False,
285
+ cache_position: Optional[torch.LongTensor] = None,
286
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
287
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
288
+ bsz, q_len, _ = hidden_states.size()
289
+
290
+ query_states = self.q_proj(hidden_states)
291
+ key_states = self.k_proj(hidden_states)
292
+ value_states = self.v_proj(hidden_states)
293
+
294
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
295
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
296
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
297
+
298
+ if position_embeddings is None:
299
+ logger.warning_once(
300
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
301
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
302
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
303
+ "removed and `position_embeddings` will be mandatory."
304
+ )
305
+ cos, sin = self.rotary_emb(value_states, position_ids)
306
+ else:
307
+ cos, sin = position_embeddings
308
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
309
+
310
+ if past_key_value is not None:
311
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
312
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
313
+
314
+ # repeat k/v heads if n_kv_heads < n_heads
315
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
316
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
317
+
318
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
319
+ if attention_mask is not None: # no matter the length, we just slice it
320
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
321
+ attn_weights = attn_weights + causal_mask
322
+
323
+ # upcast attention to fp32
324
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
325
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
326
+ attn_output = torch.matmul(attn_weights, value_states)
327
+
328
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
329
+ raise ValueError(
330
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
331
+ f" {attn_output.size()}"
332
+ )
333
+
334
+ attn_output = attn_output.transpose(1, 2).contiguous()
335
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
336
+
337
+ attn_output = self.o_proj(attn_output)
338
+
339
+ if not output_attentions:
340
+ attn_weights = None
341
+
342
+ return attn_output, attn_weights, past_key_value
343
+
344
+
345
+ class DreamSdpaAttention(DreamAttention):
346
+ """
347
+ Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
348
+ `DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
349
+ SDPA API.
350
+ """
351
+
352
+ # Adapted from DreamAttention.forward
353
+ def forward(
354
+ self,
355
+ hidden_states: torch.Tensor,
356
+ attention_mask: Optional[torch.Tensor] = None,
357
+ position_ids: Optional[torch.LongTensor] = None,
358
+ past_key_value: Optional[Cache] = None,
359
+ output_attentions: bool = False,
360
+ use_cache: bool = False,
361
+ cache_position: Optional[torch.LongTensor] = None,
362
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
363
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
364
+ if output_attentions:
365
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
366
+ logger.warning_once(
367
+ "DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
368
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
369
+ )
370
+ return super().forward(
371
+ hidden_states=hidden_states,
372
+ attention_mask=attention_mask,
373
+ position_ids=position_ids,
374
+ past_key_value=past_key_value,
375
+ output_attentions=output_attentions,
376
+ use_cache=use_cache,
377
+ )
378
+
379
+ bsz, q_len, _ = hidden_states.size()
380
+
381
+ query_states = self.q_proj(hidden_states)
382
+ key_states = self.k_proj(hidden_states)
383
+ value_states = self.v_proj(hidden_states)
384
+
385
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
386
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
387
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
388
+
389
+ if position_embeddings is None:
390
+ logger.warning_once(
391
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
392
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
393
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
394
+ "removed and `position_embeddings` will be mandatory."
395
+ )
396
+ cos, sin = self.rotary_emb(value_states, position_ids)
397
+ else:
398
+ cos, sin = position_embeddings
399
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
400
+
401
+ if past_key_value is not None:
402
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
403
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
404
+
405
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
406
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
407
+
408
+ # causal_mask = attention_mask
409
+ # if attention_mask is not None: # no matter the length, we just slice it
410
+ # causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
411
+
412
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
413
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
414
+ if query_states.device.type == "cuda" and attention_mask is not None:
415
+ query_states = query_states.contiguous()
416
+ key_states = key_states.contiguous()
417
+ value_states = value_states.contiguous()
418
+
419
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
420
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
421
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
422
+ # is_causal = True if causal_mask is None and q_len > 1 else False
423
+
424
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
425
+ query_states,
426
+ key_states,
427
+ value_states,
428
+ attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
429
+ dropout_p=self.attention_dropout if self.training else 0.0,
430
+ is_causal=False, # hard coded
431
+ )
432
+
433
+ attn_output = attn_output.transpose(1, 2).contiguous()
434
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
435
+
436
+ attn_output = self.o_proj(attn_output)
437
+
438
+ return attn_output, None, past_key_value
439
+
440
+
441
+ class DreamDecoderLayer(nn.Module):
442
+ def __init__(self, config: DreamConfig, layer_idx: int):
443
+ super().__init__()
444
+ self.hidden_size = config.hidden_size
445
+
446
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
447
+ logger.warning_once(
448
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
449
+ "unexpected results may be encountered."
450
+ )
451
+
452
+ # self.self_attn = Dream_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
453
+ self.self_attn = DreamSdpaAttention(config, layer_idx)
454
+
455
+ self.mlp = DreamMLP(config)
456
+ self.input_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
457
+ self.post_attention_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
458
+
459
+ def forward(
460
+ self,
461
+ hidden_states: torch.Tensor,
462
+ attention_mask: Optional[torch.Tensor] = None,
463
+ position_ids: Optional[torch.LongTensor] = None,
464
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
465
+ output_attentions: Optional[bool] = False,
466
+ use_cache: Optional[bool] = False,
467
+ cache_position: Optional[torch.LongTensor] = None,
468
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
469
+ **kwargs,
470
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
471
+ """
472
+ Args:
473
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
474
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
475
+ `(batch, sequence_length)` where padding elements are indicated by 0.
476
+ output_attentions (`bool`, *optional*):
477
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
478
+ returned tensors for more detail.
479
+ use_cache (`bool`, *optional*):
480
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
481
+ (see `past_key_values`).
482
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
483
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
484
+ Indices depicting the position of the input sequence tokens in the sequence.
485
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
486
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
487
+ with `head_dim` being the embedding dimension of each attention head.
488
+ kwargs (`dict`, *optional*):
489
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
490
+ into the model
491
+ """
492
+
493
+ residual = hidden_states
494
+
495
+ hidden_states = self.input_layernorm(hidden_states)
496
+
497
+ # Self Attention
498
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
499
+ hidden_states=hidden_states,
500
+ attention_mask=attention_mask,
501
+ position_ids=position_ids,
502
+ past_key_value=past_key_value,
503
+ output_attentions=output_attentions,
504
+ use_cache=use_cache,
505
+ cache_position=cache_position,
506
+ position_embeddings=position_embeddings,
507
+ )
508
+ hidden_states = residual + hidden_states
509
+
510
+ # Fully Connected
511
+ residual = hidden_states
512
+ hidden_states = self.post_attention_layernorm(hidden_states)
513
+ hidden_states = self.mlp(hidden_states)
514
+ hidden_states = residual + hidden_states
515
+
516
+ outputs = (hidden_states,)
517
+
518
+ if output_attentions:
519
+ outputs += (self_attn_weights,)
520
+
521
+ if use_cache:
522
+ outputs += (present_key_value,)
523
+
524
+ return outputs
525
+
526
+ class DreamPreTrainedModel(PreTrainedModel):
527
+ config_class = DreamConfig
528
+ base_model_prefix = "model"
529
+ supports_gradient_checkpointing = True
530
+ _no_split_modules = ["DreamDecoderLayer"]
531
+ _skip_keys_device_placement = "past_key_values"
532
+ _supports_flash_attn_2 = True
533
+ _supports_sdpa = True
534
+ _supports_cache_class = True
535
+ _supports_quantized_cache = True
536
+ _supports_static_cache = True
537
+
538
+ def _init_weights(self, module):
539
+ std = self.config.initializer_range
540
+ if isinstance(module, nn.Linear):
541
+ module.weight.data.normal_(mean=0.0, std=std)
542
+ if module.bias is not None:
543
+ module.bias.data.zero_()
544
+ elif isinstance(module, nn.Embedding):
545
+ module.weight.data.normal_(mean=0.0, std=std)
546
+ if module.padding_idx is not None:
547
+ module.weight.data[module.padding_idx].zero_()
548
+
549
+ @classmethod
550
+ def from_pretrained(
551
+ cls,
552
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
553
+ *model_args,
554
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
555
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
556
+ ignore_mismatched_sizes: bool = False,
557
+ force_download: bool = False,
558
+ local_files_only: bool = False,
559
+ token: Optional[Union[str, bool]] = None,
560
+ revision: str = "main",
561
+ use_safetensors: Optional[bool] = None,
562
+ weights_only: bool = True,
563
+ **kwargs,
564
+ ):
565
+ _model = super().from_pretrained(
566
+ pretrained_model_name_or_path,
567
+ *model_args,
568
+ config=config,
569
+ cache_dir=cache_dir,
570
+ ignore_mismatched_sizes=ignore_mismatched_sizes,
571
+ force_download=force_download,
572
+ local_files_only=local_files_only,
573
+ token=token,
574
+ revision=revision,
575
+ use_safetensors=use_safetensors,
576
+ weights_only=weights_only,
577
+ **kwargs,
578
+ )
579
+ # NOTE(Lin): we need to override the generation config
580
+ # because the generation config loaded in `from_pretrained`
581
+ # does not include all the attributes of DreamGenerationConfig
582
+ resume_download = kwargs.get("resume_download", None)
583
+ proxies = kwargs.get("proxies", None)
584
+ subfolder = kwargs.get("subfolder", "")
585
+ from_auto_class = kwargs.get("_from_auto", False)
586
+ from_pipeline = kwargs.get("_from_pipeline", None)
587
+ _model.generation_config = DreamGenerationConfig.from_pretrained(
588
+ pretrained_model_name_or_path,
589
+ cache_dir=cache_dir,
590
+ force_download=force_download,
591
+ resume_download=resume_download,
592
+ proxies=proxies,
593
+ local_files_only=local_files_only,
594
+ token=token,
595
+ revision=revision,
596
+ subfolder=subfolder,
597
+ _from_auto=from_auto_class,
598
+ _from_pipeline=from_pipeline,
599
+ )
600
+ return _model
601
+
602
+ class DreamBaseModel(DreamPreTrainedModel):
603
+ """
604
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DreamDecoderLayer`]
605
+
606
+ Args:
607
+ config: DreamConfig
608
+ """
609
+
610
+ def __init__(self, config: DreamConfig):
611
+ super().__init__(config)
612
+ self.padding_idx = config.pad_token_id
613
+ self.vocab_size = config.vocab_size
614
+
615
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
616
+ self.layers = nn.ModuleList(
617
+ [DreamDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
618
+ )
619
+ self._attn_implementation = config._attn_implementation
620
+ self.norm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
621
+ self.rotary_emb = DreamRotaryEmbedding(config=config)
622
+
623
+ self.gradient_checkpointing = False
624
+ # Initialize weights and apply final processing
625
+ self.post_init()
626
+
627
+ def get_input_embeddings(self):
628
+ return self.embed_tokens
629
+
630
+ def set_input_embeddings(self, value):
631
+ self.embed_tokens = value
632
+
633
+ def forward(
634
+ self,
635
+ input_ids: torch.LongTensor = None,
636
+ attention_mask: Optional[torch.Tensor] = None,
637
+ position_ids: Optional[torch.LongTensor] = None,
638
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
639
+ inputs_embeds: Optional[torch.FloatTensor] = None,
640
+ use_cache: Optional[bool] = None,
641
+ output_attentions: Optional[bool] = None,
642
+ output_hidden_states: Optional[bool] = None,
643
+ return_dict: Optional[bool] = None,
644
+ cache_position: Optional[torch.LongTensor] = None,
645
+ ) -> Union[Tuple, BaseModelOutput]:
646
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
647
+ output_hidden_states = (
648
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
649
+ )
650
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
651
+
652
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
653
+
654
+ if (input_ids is None) ^ (inputs_embeds is not None):
655
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
656
+
657
+ if self.gradient_checkpointing and self.training:
658
+ if use_cache:
659
+ logger.warning_once(
660
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
661
+ )
662
+ use_cache = False
663
+
664
+ if inputs_embeds is None:
665
+ inputs_embeds = self.embed_tokens(input_ids)
666
+
667
+ if use_cache and past_key_values is None:
668
+ past_key_values = DynamicCache()
669
+
670
+ if cache_position is None:
671
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
672
+ cache_position = torch.arange(
673
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
674
+ )
675
+
676
+ if position_ids is None:
677
+ position_ids = cache_position.unsqueeze(0)
678
+
679
+ hidden_states = inputs_embeds
680
+
681
+ # create position embeddings to be shared across the decoder layers
682
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
683
+
684
+ # decoder layers
685
+ all_hidden_states = () if output_hidden_states else None
686
+ all_self_attns = () if output_attentions else None
687
+
688
+ for decoder_layer in self.layers:
689
+ if output_hidden_states:
690
+ all_hidden_states += (hidden_states,)
691
+
692
+ if self.gradient_checkpointing and self.training:
693
+ layer_outputs = self._gradient_checkpointing_func(
694
+ decoder_layer.__call__,
695
+ hidden_states,
696
+ attention_mask,
697
+ position_ids,
698
+ past_key_values,
699
+ output_attentions,
700
+ use_cache,
701
+ cache_position,
702
+ position_embeddings,
703
+ )
704
+ else:
705
+ layer_outputs = decoder_layer(
706
+ hidden_states,
707
+ attention_mask=attention_mask,
708
+ position_ids=position_ids,
709
+ past_key_value=past_key_values,
710
+ output_attentions=output_attentions,
711
+ use_cache=use_cache,
712
+ cache_position=cache_position,
713
+ position_embeddings=position_embeddings,
714
+ )
715
+
716
+ hidden_states = layer_outputs[0]
717
+
718
+ if output_attentions:
719
+ all_self_attns += (layer_outputs[1],)
720
+
721
+ hidden_states = self.norm(hidden_states)
722
+
723
+ # add hidden states from the last decoder layer
724
+ if output_hidden_states:
725
+ all_hidden_states += (hidden_states,)
726
+
727
+ if not return_dict:
728
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None)
729
+ return BaseModelOutput(
730
+ last_hidden_state=hidden_states,
731
+ hidden_states=all_hidden_states,
732
+ attentions=all_self_attns,
733
+ )
734
+
735
+
736
+ class DreamModel(DreamGenerationMixin, DreamPreTrainedModel):
737
+ _tied_weights_keys = ["lm_head.weight"]
738
+
739
+ def __init__(self, config):
740
+ super().__init__(config)
741
+ self.model = DreamBaseModel(config)
742
+ self.vocab_size = config.vocab_size
743
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
744
+
745
+ # Initialize weights and apply final processing
746
+ self.post_init()
747
+
748
+ def reset_rope_parameters(self):
749
+ self.model.rotary_emb.reset_parameters()
750
+ for layer in self.model.layers:
751
+ layer.self_attn.rotary_emb.reset_parameters()
752
+
753
+ def get_input_embeddings(self):
754
+ return self.model.embed_tokens
755
+
756
+ def set_input_embeddings(self, value):
757
+ self.model.embed_tokens = value
758
+
759
+ def get_output_embeddings(self):
760
+ return self.lm_head
761
+
762
+ def set_output_embeddings(self, new_embeddings):
763
+ self.lm_head = new_embeddings
764
+
765
+ def set_decoder(self, decoder):
766
+ self.model = decoder
767
+
768
+ def get_decoder(self):
769
+ return self.model
770
+
771
+ def forward(
772
+ self,
773
+ input_ids: torch.LongTensor = None,
774
+ attention_mask: Optional[torch.Tensor] = None,
775
+ position_ids: Optional[torch.LongTensor] = None,
776
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
777
+ inputs_embeds: Optional[torch.FloatTensor] = None,
778
+ labels: Optional[torch.LongTensor] = None,
779
+ use_cache: Optional[bool] = None,
780
+ output_attentions: Optional[bool] = None,
781
+ output_hidden_states: Optional[bool] = None,
782
+ return_dict: Optional[bool] = None,
783
+ cache_position: Optional[torch.LongTensor] = None,
784
+ num_logits_to_keep: int = 0,
785
+ **loss_kwargs,
786
+ ) -> Union[Tuple, MaskedLMOutput]:
787
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
788
+ output_hidden_states = (
789
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
790
+ )
791
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
792
+
793
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
794
+ outputs = self.model(
795
+ input_ids=input_ids,
796
+ attention_mask=attention_mask,
797
+ position_ids=position_ids,
798
+ past_key_values=past_key_values,
799
+ inputs_embeds=inputs_embeds,
800
+ use_cache=use_cache,
801
+ output_attentions=output_attentions,
802
+ output_hidden_states=output_hidden_states,
803
+ return_dict=return_dict,
804
+ cache_position=cache_position,
805
+ )
806
+
807
+ hidden_states = outputs[0]
808
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
809
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
810
+
811
+ loss = None
812
+ if labels is not None:
813
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
814
+
815
+ if not return_dict:
816
+ output = (logits,) + outputs[1:]
817
+ return (loss,) + output if loss is not None else output
818
+
819
+ return MaskedLMOutput(
820
+ loss=loss,
821
+ logits=logits,
822
+ hidden_states=outputs.hidden_states,
823
+ attentions=outputs.attentions,
824
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|beginoftext|>",
4
+ "<|mask|>",
5
+ {
6
+ "content": "<|im_end|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ }
12
+ ],
13
+ "bos_token": {
14
+ "content": "<|beginoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "<|endoftext|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "mask_token": {
28
+ "content": "<|mask|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "pad_token": {
35
+ "content": "<|dlm_pad|>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
tokenization_dream.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Dream team, HKUNLP Group and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on Qwen's implementations in this library.
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """Tokenization classes for Dream."""
17
+
18
+ import json
19
+ import os
20
+ import unicodedata
21
+ from functools import lru_cache
22
+ from typing import Optional, Tuple
23
+
24
+ import regex as re
25
+
26
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
27
+ from transformers.utils import logging
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ VOCAB_FILES_NAMES = {
33
+ "vocab_file": "vocab.json",
34
+ "merges_file": "merges.txt",
35
+ }
36
+
37
+
38
+ MAX_MODEL_INPUT_SIZES = {"dream/dream-tokenizer": 32768}
39
+
40
+ PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
41
+
42
+
43
+ @lru_cache()
44
+ # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
45
+ def bytes_to_unicode():
46
+ """
47
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
48
+ characters the bpe code barfs on.
49
+
50
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
51
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
52
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
53
+ tables between utf-8 bytes and unicode strings.
54
+ """
55
+ bs = (
56
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
57
+ )
58
+ cs = bs[:]
59
+ n = 0
60
+ for b in range(2**8):
61
+ if b not in bs:
62
+ bs.append(b)
63
+ cs.append(2**8 + n)
64
+ n += 1
65
+ cs = [chr(n) for n in cs]
66
+ return dict(zip(bs, cs))
67
+
68
+
69
+ # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
70
+ def get_pairs(word):
71
+ """
72
+ Return set of symbol pairs in a word.
73
+
74
+ Word is represented as tuple of symbols (symbols being variable-length strings).
75
+ """
76
+ pairs = set()
77
+ prev_char = word[0]
78
+ for char in word[1:]:
79
+ pairs.add((prev_char, char))
80
+ prev_char = char
81
+ return pairs
82
+
83
+
84
+ class DreamTokenizer(PreTrainedTokenizer):
85
+ """
86
+ Construct a Dream tokenizer. Based on byte-level Byte-Pair-Encoding.
87
+
88
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
89
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
90
+
91
+ ```python
92
+ >>> from transformers import AutoTokenizer
93
+
94
+ >>> tokenizer = AutoTokenizer.from_pretrained("Dream-org/Dream-v0-Base-7B", trust_remote_code=True)
95
+ >>> tokenizer("Hello world")["input_ids"]
96
+ [9707, 1879]
97
+
98
+ >>> tokenizer(" Hello world")["input_ids"]
99
+ [21927, 1879]
100
+ ```
101
+ This is expected.
102
+
103
+ You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
104
+
105
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
106
+ this superclass for more information regarding those methods.
107
+
108
+ Args:
109
+ vocab_file (`str`):
110
+ Path to the vocabulary file.
111
+ merges_file (`str`):
112
+ Path to the merges file.
113
+ errors (`str`, *optional*, defaults to `"replace"`):
114
+ Paradigm to follow when decoding bytes to UTF-8. See
115
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
116
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
117
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
118
+ token instead.
119
+ bos_token (`str`, *optional*):
120
+ The beginning of sequence token. Not applicable for this tokenizer.
121
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
122
+ The end of sequence token.
123
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
124
+ The token used for padding, for example when batching sequences of different lengths.
125
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
126
+ Whether or not the model should cleanup the spaces that were added when splitting the input text during the
127
+ tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
128
+ split_special_tokens (`bool`, *optional*, defaults to `False`):
129
+ Whether or not the special tokens should be split during the tokenization process. The default behavior is
130
+ to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
131
+ ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
132
+ '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
133
+ """
134
+
135
+ vocab_files_names = VOCAB_FILES_NAMES
136
+ model_input_names = ["input_ids", "attention_mask"]
137
+
138
+ def __init__(
139
+ self,
140
+ vocab_file,
141
+ merges_file,
142
+ errors="replace",
143
+ unk_token="<|endoftext|>",
144
+ bos_token=None,
145
+ eos_token="<|endoftext|>",
146
+ pad_token="<|endoftext|>",
147
+ clean_up_tokenization_spaces=False,
148
+ split_special_tokens=False,
149
+ **kwargs,
150
+ ):
151
+ # Dream vocab does not contain control tokens; added tokens need to be special
152
+ bos_token = (
153
+ AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
154
+ if isinstance(bos_token, str)
155
+ else bos_token
156
+ )
157
+ eos_token = (
158
+ AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
159
+ if isinstance(eos_token, str)
160
+ else eos_token
161
+ )
162
+ unk_token = (
163
+ AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
164
+ if isinstance(unk_token, str)
165
+ else unk_token
166
+ )
167
+ pad_token = (
168
+ AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
169
+ if isinstance(pad_token, str)
170
+ else pad_token
171
+ )
172
+
173
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
174
+ self.encoder = json.load(vocab_handle)
175
+ self.decoder = {v: k for k, v in self.encoder.items()}
176
+ self.errors = errors # how to handle errors in decoding
177
+ self.byte_encoder = bytes_to_unicode()
178
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
179
+ bpe_merges = []
180
+ with open(merges_file, encoding="utf-8") as merges_handle:
181
+ for i, line in enumerate(merges_handle):
182
+ line = line.strip()
183
+ if (i == 0 and line.startswith("#version:")) or not line:
184
+ continue
185
+ bpe_merges.append(tuple(line.split()))
186
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
187
+ # NOTE: the cache can grow without bound and will get really large for long running processes
188
+ # (esp. for texts of language that do not use space between word, e.g. Chinese); technically
189
+ # not a memory leak but appears as one.
190
+ # GPT2Tokenizer has the same problem, so let's be consistent.
191
+ self.cache = {}
192
+
193
+ self.pat = re.compile(PRETOKENIZE_REGEX)
194
+
195
+ if kwargs.get("add_prefix_space", False):
196
+ logger.warning_once(
197
+ f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
198
+ )
199
+
200
+ super().__init__(
201
+ errors=errors,
202
+ bos_token=bos_token,
203
+ eos_token=eos_token,
204
+ pad_token=pad_token,
205
+ unk_token=unk_token,
206
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
207
+ split_special_tokens=split_special_tokens,
208
+ **kwargs,
209
+ )
210
+
211
+ @property
212
+ def vocab_size(self) -> int:
213
+ return len(self.encoder)
214
+
215
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
216
+ def get_vocab(self):
217
+ return dict(self.encoder, **self.added_tokens_encoder)
218
+
219
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
220
+ def bpe(self, token):
221
+ if token in self.cache:
222
+ return self.cache[token]
223
+ word = tuple(token)
224
+ pairs = get_pairs(word)
225
+
226
+ if not pairs:
227
+ return token
228
+
229
+ while True:
230
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
231
+ if bigram not in self.bpe_ranks:
232
+ break
233
+ first, second = bigram
234
+ new_word = []
235
+ i = 0
236
+ while i < len(word):
237
+ try:
238
+ j = word.index(first, i)
239
+ except ValueError:
240
+ new_word.extend(word[i:])
241
+ break
242
+ else:
243
+ new_word.extend(word[i:j])
244
+ i = j
245
+
246
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
247
+ new_word.append(first + second)
248
+ i += 2
249
+ else:
250
+ new_word.append(word[i])
251
+ i += 1
252
+ new_word = tuple(new_word)
253
+ word = new_word
254
+ if len(word) == 1:
255
+ break
256
+ else:
257
+ pairs = get_pairs(word)
258
+ word = " ".join(word)
259
+ self.cache[token] = word
260
+ return word
261
+
262
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
263
+ def _tokenize(self, text):
264
+ """Tokenize a string."""
265
+ bpe_tokens = []
266
+ for token in re.findall(self.pat, text):
267
+ token = "".join(
268
+ self.byte_encoder[b] for b in token.encode("utf-8")
269
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
270
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
271
+ return bpe_tokens
272
+
273
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
274
+ def _convert_token_to_id(self, token):
275
+ """Converts a token (str) in an id using the vocab."""
276
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
277
+
278
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
279
+ def _convert_id_to_token(self, index):
280
+ """Converts an index (integer) in a token (str) using the vocab."""
281
+ return self.decoder.get(index)
282
+
283
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
284
+ def convert_tokens_to_string(self, tokens):
285
+ """Converts a sequence of tokens (string) in a single string."""
286
+ text = "".join(tokens)
287
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
288
+ return text
289
+
290
+ def decode(
291
+ self,
292
+ token_ids,
293
+ skip_special_tokens: bool = False,
294
+ clean_up_tokenization_spaces: Optional[bool] = False,
295
+ spaces_between_special_tokens: bool = False,
296
+ **kwargs,
297
+ ) -> str:
298
+ # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
299
+ # and cannot be configured elsewhere, but it should default to False for DreamTokenizer
300
+ return super().decode(
301
+ token_ids,
302
+ skip_special_tokens=skip_special_tokens,
303
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
304
+ spaces_between_special_tokens=spaces_between_special_tokens,
305
+ **kwargs,
306
+ )
307
+
308
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
309
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
310
+ if not os.path.isdir(save_directory):
311
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
312
+ return
313
+ vocab_file = os.path.join(
314
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
315
+ )
316
+ merge_file = os.path.join(
317
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
318
+ )
319
+
320
+ with open(vocab_file, "w", encoding="utf-8") as f:
321
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
322
+
323
+ index = 0
324
+ with open(merge_file, "w", encoding="utf-8") as writer:
325
+ writer.write("#version: 0.2\n")
326
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
327
+ if index != token_index:
328
+ logger.warning(
329
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
330
+ " Please check that the tokenizer is not corrupted!"
331
+ )
332
+ index = token_index
333
+ writer.write(" ".join(bpe_tokens) + "\n")
334
+ index += 1
335
+
336
+ return vocab_file, merge_file
337
+
338
+ def prepare_for_tokenization(self, text, **kwargs):
339
+ text = unicodedata.normalize("NFC", text)
340
+ return (text, kwargs)
tokenizer_config.json ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|beginoftext|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|mask|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|dlm_pad|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ }
205
+ },
206
+ "additional_special_tokens": [
207
+ "<|beginoftext|>",
208
+ "<|mask|>",
209
+ "<|im_end|>"
210
+ ],
211
+ "auto_map": {
212
+ "AutoTokenizer": [
213
+ "tokenization_dream.DreamTokenizer",
214
+ null
215
+ ]
216
+ },
217
+ "bos_token": "<|beginoftext|>",
218
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
219
+ "clean_up_tokenization_spaces": false,
220
+ "eos_token": "<|endoftext|>",
221
+ "errors": "replace",
222
+ "extra_special_tokens": {},
223
+ "mask_token": "<|mask|>",
224
+ "model_max_length": 131072,
225
+ "pad_token": "<|dlm_pad|>",
226
+ "split_special_tokens": false,
227
+ "tokenizer_class": "DreamTokenizer",
228
+ "unk_token": null
229
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)