qc903113684 commited on
Commit
1f84e0e
·
verified ·
1 Parent(s): 308fde8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -5
README.md CHANGED
@@ -1,5 +1,38 @@
1
- ---
2
- license: other
3
- license_name: aplux-model-farm-license
4
- license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: aplux-model-farm-license
4
+ license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
+ pipeline_tag: image-classification
6
+ tags:
7
+ - AIoT
8
+ - QNN
9
+ ---
10
+
11
+ ![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F20250319020437_%25E5%259B%25BE-21.png&w=640&q=75)
12
+
13
+ ## WideResNet50: Image Classification
14
+
15
+ WideResNet50 is an enhanced residual network that boosts performance by increasing network width (channel count) rather than depth. It employs wider residual blocks (e.g., width factor of 2), expanding feature dimensions while reducing layers, balancing computational efficiency and representational power. Retaining residual skip connections to mitigate vanishing gradients, it uses batch normalization for faster convergence. Compared to ResNet-50, WideResNet50 achieves higher accuracy on datasets like ImageNet with controlled parameter growth, suitable for image classification and object detection. Its design prioritizes "width over depth," ideal for resource-constrained yet accuracy-demanding applications.
16
+
17
+ ### Source model
18
+
19
+ - Input shape: 640x640
20
+ - Number of parameters: 4.44M
21
+ - Model size: 17.91 MB
22
+ - Output shape: 1x8400x85
23
+
24
+ The source model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
25
+
26
+ ## Performance Reference
27
+
28
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
29
+
30
+ ## Inference & Model Conversion
31
+
32
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
33
+
34
+ ## License
35
+
36
+ - Source Model: [BSD-3-CLAUSE](https://github.com/pytorch/vision/blob/main/LICENSE)
37
+
38
+ - Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)