qc903113684 commited on
Commit
26db6be
·
verified ·
1 Parent(s): 1bce762

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -5
README.md CHANGED
@@ -1,5 +1,38 @@
1
- ---
2
- license: other
3
- license_name: aplux-model-farm-license
4
- license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: aplux-model-farm-license
4
+ license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
+ pipeline_tag: image-classification
6
+ tags:
7
+ - AIoT
8
+ - QNN
9
+ ---
10
+
11
+ ![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F20250319020208_%25E5%259B%25BE-21.png&w=640&q=75)
12
+
13
+ ## WideResNet101: Image Classification
14
+
15
+ WideResNet101 is a high-performance variant of residual networks, boosting model capacity by significantly increasing network width (channel count) rather than adding layers. Building on ResNet-101, it employs wider residual blocks (e.g., width factors of 2 or 4) to expand feature dimensions for enhanced local detail capture, while maintaining shallower depth to mitigate gradient vanishing. Inheriting residual skip connections and batch normalization, it ensures stable training and fast convergence, achieving higher accuracy than ResNet-101 on datasets like ImageNet. Despite moderate parameter growth, optimized computational efficiency makes it suitable for high-precision tasks (e.g., image classification, object detection), balancing performance and resource constraints.
16
+
17
+ ### Source model
18
+
19
+ - Input shape: 224x224
20
+ - Number of parameters: 121.01M
21
+ - Model size: 483.82M
22
+ - Output shape: 1x1000
23
+
24
+ The source model can be found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
25
+
26
+ ## Performance Reference
27
+
28
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
29
+
30
+ ## Inference & Model Conversion
31
+
32
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
33
+
34
+ ## License
35
+
36
+ - Source Model: [BSD-3-CLAUSE](https://github.com/pytorch/vision/blob/main/LICENSE)
37
+
38
+ - Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)