qc903113684 commited on
Commit
6128fc7
·
verified ·
1 Parent(s): e57bb40

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -5
README.md CHANGED
@@ -1,5 +1,38 @@
1
- ---
2
- license: other
3
- license_name: aplux-model-farm-license
4
- license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: aplux-model-farm-license
4
+ license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
+ pipeline_tag: image-segmentation
6
+ tags:
7
+ - AIoT
8
+ - QNN
9
+ ---
10
+
11
+ ![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F20250320025512_%25E5%259B%25BE1(10).png&w=640&q=75)
12
+
13
+ ## SAM2-Unet-tiny: Semantic Segmentation
14
+
15
+ SAM2-Unet is a hybrid segmentation model integrating the Segment Anything Model (SAM) with U-Net, optimized for medical image segmentation and few-shot learning. It incorporates SAM's visual prompt mechanism into U-Net's encoder-decoder structure, enabling dynamic target guidance via interactive point/box inputs while retaining skip connections for multi-scale feature fusion. Lightweight adapters fine-tune SAM's pretrained weights to enhance sensitivity to low-contrast regions in medical images (e.g., CT/MRI) and reduce reliance on large annotated datasets. Supporting zero-shot transfer and few-shot tuning, it improves Dice scores by ~8% over traditional U-Net on BraTS and ISIC benchmarks with low computational overhead, ideal for clinical diagnostics and real-time lesion localization.
16
+
17
+ ### Source model
18
+
19
+ - Input shape: 1x3x352x352
20
+ - Number of parameters: 28.38M
21
+ - Model size: 119.42M
22
+ - Output shape: 1x1x352x352
23
+
24
+ The source model can be found [here](https://github.com/WZH0120/SAM2-UNet)
25
+
26
+ ## Performance Reference
27
+
28
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
29
+
30
+ ## Inference & Model Conversion
31
+
32
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
33
+
34
+ ## License
35
+
36
+ - Source Model: [APACHE-2.0](https://github.com/WZH0120/SAM2-UNet/blob/main/LICENSE)
37
+
38
+ - Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)