Upload 15 files
Browse files- .gitattributes +5 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/README.md +40 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin +3 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/python/test.jpg +3 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/README.md +40 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin +3 -0
- model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/README.md +40 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/models/ppe_detection_fp16.qnn231.ctx.bin +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/README.md +40 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/python/test.jpg +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/README.md +40 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin +3 -0
- model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
|
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x320x192]
|
5 |
+
- Number of parameters: 5.92M
|
6 |
+
- Model size: 23.64M
|
7 |
+
- Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
|
8 |
+
|
9 |
+
Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: INT8
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: FV01 QCS6490
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb08049418ffedbd60524374c2cd3424059c4617c4306e378ba9fc45e156d90
|
3 |
+
size 9912520
|
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/python/test.jpg
ADDED
![]() |
Git LFS Details
|
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x320x192]
|
5 |
+
- Number of parameters: 5.92M
|
6 |
+
- Model size: 23.64M
|
7 |
+
- Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
|
8 |
+
|
9 |
+
Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: W8A16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: FV01 QCS6490
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e62c85be0f7fab7417902ff72a1ae57c67db00f1246e944ba337c9291dc24d93
|
3 |
+
size 9912520
|
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg
ADDED
![]() |
Git LFS Details
|
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x320x192]
|
5 |
+
- Number of parameters: 5.92M
|
6 |
+
- Model size: 23.64M
|
7 |
+
- Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
|
8 |
+
|
9 |
+
Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: FP16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/models/ppe_detection_fp16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4ef9ff2a720bfcc96ed7c094ef95228fde0e6ffa6157066484b27a43d5fece
|
3 |
+
size 12822008
|
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg
ADDED
![]() |
Git LFS Details
|
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x320x192]
|
5 |
+
- Number of parameters: 5.92M
|
6 |
+
- Model size: 23.64M
|
7 |
+
- Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
|
8 |
+
|
9 |
+
Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: INT8
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7312316cfb7c436164b3c79c7cfdae73624a06b244cbdc4fd86df7eae85c4fd
|
3 |
+
size 6746248
|
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/python/test.jpg
ADDED
![]() |
Git LFS Details
|
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x320x192]
|
5 |
+
- Number of parameters: 5.92M
|
6 |
+
- Model size: 23.64M
|
7 |
+
- Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
|
8 |
+
|
9 |
+
Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: W8A16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76ec41d0cfc0a70641f1ce983e9a02c440562beed4e3b54faf78f52cc6afbbc6
|
3 |
+
size 6832264
|
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg
ADDED
![]() |
Git LFS Details
|