qc903113684 commited on
Commit
be4f28f
·
verified ·
1 Parent(s): 55aacaa

Upload 15 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
37
+ model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
38
+ model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
39
+ model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
40
+ model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg filter=lfs diff=lfs merge=lfs -text
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model Information
2
+
3
+ ### Source model
4
+ - Input shape: [1x3x320x192]
5
+ - Number of parameters: 5.92M
6
+ - Model size: 23.64M
7
+ - Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
8
+
9
+ Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
10
+
11
+ ### Converted model
12
+
13
+ - Precision: INT8
14
+ - Backend: QNN2.31
15
+ - Target Device: FV01 QCS6490
16
+
17
+ ## Inference with AidLite SDK
18
+
19
+ ### SDK installation
20
+ Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
21
+
22
+ - Install AidLite SDK
23
+
24
+ ```bash
25
+ # Install the appropriate version of the aidlite sdk
26
+ sudo aid-pkg update
27
+ sudo aid-pkg install aidlite-sdk
28
+ # Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
29
+ sudo aid-pkg install aidlite-{QNN VERSION}
30
+ ```
31
+
32
+ - Verify AidLite SDK
33
+
34
+ ```bash
35
+ # aidlite sdk c++ check
36
+ python3 -c "import aidlite ; print(aidlite.get_library_version())"
37
+
38
+ # aidlite sdk python check
39
+ python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
40
+ ```
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb08049418ffedbd60524374c2cd3424059c4617c4306e378ba9fc45e156d90
3
+ size 9912520
model_farm_ppe_detection_qcs6490_qnn2.31_int8_aidlite/python/test.jpg ADDED

Git LFS Details

  • SHA256: 09bdd596551b20288cdfff414f54175093f07234f4535df1c58a5daf0d1765dc
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model Information
2
+
3
+ ### Source model
4
+ - Input shape: [1x3x320x192]
5
+ - Number of parameters: 5.92M
6
+ - Model size: 23.64M
7
+ - Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
8
+
9
+ Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
10
+
11
+ ### Converted model
12
+
13
+ - Precision: W8A16
14
+ - Backend: QNN2.31
15
+ - Target Device: FV01 QCS6490
16
+
17
+ ## Inference with AidLite SDK
18
+
19
+ ### SDK installation
20
+ Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
21
+
22
+ - Install AidLite SDK
23
+
24
+ ```bash
25
+ # Install the appropriate version of the aidlite sdk
26
+ sudo aid-pkg update
27
+ sudo aid-pkg install aidlite-sdk
28
+ # Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
29
+ sudo aid-pkg install aidlite-{QNN VERSION}
30
+ ```
31
+
32
+ - Verify AidLite SDK
33
+
34
+ ```bash
35
+ # aidlite sdk c++ check
36
+ python3 -c "import aidlite ; print(aidlite.get_library_version())"
37
+
38
+ # aidlite sdk python check
39
+ python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
40
+ ```
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e62c85be0f7fab7417902ff72a1ae57c67db00f1246e944ba337c9291dc24d93
3
+ size 9912520
model_farm_ppe_detection_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg ADDED

Git LFS Details

  • SHA256: 09bdd596551b20288cdfff414f54175093f07234f4535df1c58a5daf0d1765dc
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model Information
2
+
3
+ ### Source model
4
+ - Input shape: [1x3x320x192]
5
+ - Number of parameters: 5.92M
6
+ - Model size: 23.64M
7
+ - Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
8
+
9
+ Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
10
+
11
+ ### Converted model
12
+
13
+ - Precision: FP16
14
+ - Backend: QNN2.31
15
+ - Target Device: SNM972 QCS8550
16
+
17
+ ## Inference with AidLite SDK
18
+
19
+ ### SDK installation
20
+ Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
21
+
22
+ - Install AidLite SDK
23
+
24
+ ```bash
25
+ # Install the appropriate version of the aidlite sdk
26
+ sudo aid-pkg update
27
+ sudo aid-pkg install aidlite-sdk
28
+ # Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
29
+ sudo aid-pkg install aidlite-{QNN VERSION}
30
+ ```
31
+
32
+ - Verify AidLite SDK
33
+
34
+ ```bash
35
+ # aidlite sdk c++ check
36
+ python3 -c "import aidlite ; print(aidlite.get_library_version())"
37
+
38
+ # aidlite sdk python check
39
+ python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
40
+ ```
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/models/ppe_detection_fp16.qnn231.ctx.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb4ef9ff2a720bfcc96ed7c094ef95228fde0e6ffa6157066484b27a43d5fece
3
+ size 12822008
model_farm_ppe_detection_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg ADDED

Git LFS Details

  • SHA256: 09bdd596551b20288cdfff414f54175093f07234f4535df1c58a5daf0d1765dc
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model Information
2
+
3
+ ### Source model
4
+ - Input shape: [1x3x320x192]
5
+ - Number of parameters: 5.92M
6
+ - Model size: 23.64M
7
+ - Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
8
+
9
+ Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
10
+
11
+ ### Converted model
12
+
13
+ - Precision: INT8
14
+ - Backend: QNN2.31
15
+ - Target Device: SNM972 QCS8550
16
+
17
+ ## Inference with AidLite SDK
18
+
19
+ ### SDK installation
20
+ Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
21
+
22
+ - Install AidLite SDK
23
+
24
+ ```bash
25
+ # Install the appropriate version of the aidlite sdk
26
+ sudo aid-pkg update
27
+ sudo aid-pkg install aidlite-sdk
28
+ # Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
29
+ sudo aid-pkg install aidlite-{QNN VERSION}
30
+ ```
31
+
32
+ - Verify AidLite SDK
33
+
34
+ ```bash
35
+ # aidlite sdk c++ check
36
+ python3 -c "import aidlite ; print(aidlite.get_library_version())"
37
+
38
+ # aidlite sdk python check
39
+ python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
40
+ ```
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/models/ppe_detection_w8a8.qnn231.ctx.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7312316cfb7c436164b3c79c7cfdae73624a06b244cbdc4fd86df7eae85c4fd
3
+ size 6746248
model_farm_ppe_detection_qcs8550_qnn2.31_int8_aidlite/python/test.jpg ADDED

Git LFS Details

  • SHA256: 09bdd596551b20288cdfff414f54175093f07234f4535df1c58a5daf0d1765dc
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model Information
2
+
3
+ ### Source model
4
+ - Input shape: [1x3x320x192]
5
+ - Number of parameters: 5.92M
6
+ - Model size: 23.64M
7
+ - Output shape: [[1x21x40x24],[1x21x20x12],[1x21x10x6]]
8
+
9
+ Source model repository: [PPE-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net/model.py)
10
+
11
+ ### Converted model
12
+
13
+ - Precision: W8A16
14
+ - Backend: QNN2.31
15
+ - Target Device: SNM972 QCS8550
16
+
17
+ ## Inference with AidLite SDK
18
+
19
+ ### SDK installation
20
+ Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
21
+
22
+ - Install AidLite SDK
23
+
24
+ ```bash
25
+ # Install the appropriate version of the aidlite sdk
26
+ sudo aid-pkg update
27
+ sudo aid-pkg install aidlite-sdk
28
+ # Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
29
+ sudo aid-pkg install aidlite-{QNN VERSION}
30
+ ```
31
+
32
+ - Verify AidLite SDK
33
+
34
+ ```bash
35
+ # aidlite sdk c++ check
36
+ python3 -c "import aidlite ; print(aidlite.get_library_version())"
37
+
38
+ # aidlite sdk python check
39
+ python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
40
+ ```
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/models/ppe_detection_w8a16.qnn231.ctx.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76ec41d0cfc0a70641f1ce983e9a02c440562beed4e3b54faf78f52cc6afbbc6
3
+ size 6832264
model_farm_ppe_detection_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg ADDED

Git LFS Details

  • SHA256: 09bdd596551b20288cdfff414f54175093f07234f4535df1c58a5daf0d1765dc
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB