qc903113684 commited on
Commit
72318e5
·
verified ·
1 Parent(s): 6d8af0c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -5
README.md CHANGED
@@ -1,5 +1,38 @@
1
- ---
2
- license: other
3
- license_name: aplux-model-farm-license
4
- license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: aplux-model-farm-license
4
+ license_link: https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf
5
+ pipeline_tag: image-classification
6
+ tags:
7
+ - AIoT
8
+ - QNN
9
+ ---
10
+
11
+ ![](https://aiot.aidlux.com/_next/image?url=%2Fapi%2Fv1%2Ffiles%2Fmodel%2Fcover%2F20250403020155_%25E5%259B%25BE1%402x(4).png&w=640&q=75)
12
+
13
+ ## NASNet: Image Classification
14
+
15
+ NASNet, introduced by Google in 2017, is an automated neural network architecture designed via Neural Architecture Search (NAS). It uses reinforcement learning to discover optimal building blocks (Cells) on CIFAR-10, then scales them for large-scale tasks like ImageNet classification. With fewer parameters (e.g., NASNet-A at 5.3M) than manual designs (e.g., ResNet), NASNet achieved state-of-the-art accuracy and computational efficiency. While its search process required massive GPU resources, NASNet demonstrated the viability of automated architecture design, inspiring EfficientNet and advancing AutoML. Its modular Cells were widely adapted for tasks like object detection, cementing NASNet’s role in efficient model development.
16
+
17
+ ### Source model
18
+
19
+ - Input shape: 1x224x224x3
20
+ - Number of parameters: 88.7M
21
+ - Model size: 338M
22
+ - Output shape: 1x1000
23
+
24
+ The source model can be found [here](https://github.com/huggingface/pytorch-image-models/tree/main)
25
+
26
+ ## Performance Reference
27
+
28
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
29
+
30
+ ## Inference & Model Conversion
31
+
32
+ Please search model by model name in [Model Farm](https://aiot.aidlux.com/en/models)
33
+
34
+ ## License
35
+
36
+ - Source Model: [APACHE-2.0](https://github.com/huggingface/pytorch-image-models/blob/main/LICENSE)
37
+
38
+ - Deployable Model: [APLUX-MODEL-FARM-LICENSE](https://aiot.aidlux.com/api/v1/files/license/model_farm_license_en.pdf)