Upload 15 files
Browse files- model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/README.md +40 -0
- model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/models/facial_landmark_det_w8a8.qnn231.ctx.bin +3 -0
- model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/python/test.jpg +0 -0
- model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/README.md +40 -0
- model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/models/facial_landmark_det_w8a16.qnn231.ctx.bin +3 -0
- model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg +0 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/README.md +40 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/models/facial_landmark_det_fp16.qnn231.ctx.bin +3 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg +0 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/README.md +40 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/models/facial_landmark_det_w8a8.qnn231.ctx.bin +3 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/python/test.jpg +0 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/README.md +40 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/converted_models/facial_landmark_det_w8a16.qnn231.ctx.bin +3 -0
- model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg +0 -0
model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x128x128]
|
5 |
+
- Number of parameters: 5.17M
|
6 |
+
- Model size: 20.95M
|
7 |
+
- Output shape: [1x265]
|
8 |
+
|
9 |
+
Source model repository: [Facial-Landmark-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: INT8
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: FV01 QCS6490
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/models/facial_landmark_det_w8a8.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03c8b5a130676bfc65932238916464229b0363e2229fc2ab4d5388e239635f65
|
3 |
+
size 5515808
|
model_farm_facial_landmark_det_qcs6490_qnn2.31_int8_aidlite/python/test.jpg
ADDED
![]() |
model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x128x128]
|
5 |
+
- Number of parameters: 5.17M
|
6 |
+
- Model size: 20.95M
|
7 |
+
- Output shape: [1x265]
|
8 |
+
|
9 |
+
Source model repository: [Facial-Landmark-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: W8A16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: FV01 QCS6490
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/models/facial_landmark_det_w8a16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a42b686b432dd75ae9c74b2083542fe2c44e28016966f4147b969a67c5e42fc
|
3 |
+
size 5519904
|
model_farm_facial_landmark_det_qcs6490_qnn2.31_w8a16_aidlite/python/test.jpg
ADDED
![]() |
model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x128x128]
|
5 |
+
- Number of parameters: 5.17M
|
6 |
+
- Model size: 20.95M
|
7 |
+
- Output shape: [1x265]
|
8 |
+
|
9 |
+
Source model repository: [Facial-Landmark-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: FP16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/models/facial_landmark_det_fp16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fb86293fa5423733133a7c08b2655350cd1e49dfb787deba8dc10bf23b45e96
|
3 |
+
size 11042416
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_fp16_aidlite/python/test.jpg
ADDED
![]() |
model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x128x128]
|
5 |
+
- Number of parameters: 5.17M
|
6 |
+
- Model size: 20.95M
|
7 |
+
- Output shape: [1x265]
|
8 |
+
|
9 |
+
Source model repository: [Facial-Landmark-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: INT8
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/models/facial_landmark_det_w8a8.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ea3df6f2dc8f72c9ada4ca3af78abb02fe724508235a02b5f8d78730ec7cf96
|
3 |
+
size 5515808
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_int8_aidlite/python/test.jpg
ADDED
![]() |
model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Model Information
|
2 |
+
|
3 |
+
### Source model
|
4 |
+
- Input shape: [1x3x128x128]
|
5 |
+
- Number of parameters: 5.17M
|
6 |
+
- Model size: 20.95M
|
7 |
+
- Output shape: [1x265]
|
8 |
+
|
9 |
+
Source model repository: [Facial-Landmark-Detection](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
|
10 |
+
|
11 |
+
### Converted model
|
12 |
+
|
13 |
+
- Precision: W8A16
|
14 |
+
- Backend: QNN2.31
|
15 |
+
- Target Device: SNM972 QCS8550
|
16 |
+
|
17 |
+
## Inference with AidLite SDK
|
18 |
+
|
19 |
+
### SDK installation
|
20 |
+
Model Farm uses AidLite SDK as the model inference SDK. For details, please refer to the [AidLite Developer Documentation](https://v2.docs.aidlux.com/en/sdk-api/aidlite-sdk/)
|
21 |
+
|
22 |
+
- Install AidLite SDK
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# Install the appropriate version of the aidlite sdk
|
26 |
+
sudo aid-pkg update
|
27 |
+
sudo aid-pkg install aidlite-sdk
|
28 |
+
# Download the qnn version that matches the above backend. Eg Install QNN2.23 Aidlite: sudo aid-pkg install aidlite-qnn223
|
29 |
+
sudo aid-pkg install aidlite-{QNN VERSION}
|
30 |
+
```
|
31 |
+
|
32 |
+
- Verify AidLite SDK
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# aidlite sdk c++ check
|
36 |
+
python3 -c "import aidlite ; print(aidlite.get_library_version())"
|
37 |
+
|
38 |
+
# aidlite sdk python check
|
39 |
+
python3 -c "import aidlite ; print(aidlite.get_py_library_version())"
|
40 |
+
```
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/converted_models/facial_landmark_det_w8a16.qnn231.ctx.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8858ab712b6a31f93cfad48ac7d41c0080100b4be47d82f79ea61c418dc98055
|
3 |
+
size 5552672
|
model_farm_facial_landmark_det_qcs8550_qnn2.31_w8a16_aidlite/python/test.jpg
ADDED
![]() |