Update README.md
Browse files
README.md
CHANGED
@@ -120,17 +120,132 @@ Images and their corresponding style semantic maps were resized to fit the input
|
|
120 |
- Number of attention layers: 8
|
121 |
- Number of transformer encoder layers (feed-forward): 8
|
122 |
- Number of transformer decoder layers (feed-forward): 8
|
123 |
-
- Activation function: ReLU
|
124 |
- Patch Size: 8
|
125 |
- Swin Window Size: 7
|
126 |
- Swin Shift Size: 2
|
127 |
-
-
|
128 |
|
129 |
-
#### Speeds, Sizes, Times
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
## Evaluation
|
136 |
|
|
|
120 |
- Number of attention layers: 8
|
121 |
- Number of transformer encoder layers (feed-forward): 8
|
122 |
- Number of transformer decoder layers (feed-forward): 8
|
123 |
+
- Activation function(s): ReLU, GeLU
|
124 |
- Patch Size: 8
|
125 |
- Swin Window Size: 7
|
126 |
- Swin Shift Size: 2
|
127 |
+
- Style Transfer Module: AdaIN
|
128 |
|
129 |
+
#### Speeds, Sizes, Times
|
130 |
|
131 |
+
**Model size:** There are currently four versions of the model:
|
132 |
+
- v1_1: 224M params
|
133 |
+
- v1_2: 200M params
|
134 |
+
- v1_3: 93M params
|
135 |
+
- v2_1: 2.9M params
|
136 |
|
137 |
+
**Architecture:** The latest model, v2_1, introduces Location-based Multi-head Attention (LbMhA) to improve feature extraction at lower parameters. The three other predecessors attained a similar level of accuracy without the LbMhA layers. The general architecture is as follows:
|
138 |
+
|
139 |
+
```python
|
140 |
+
223543305
|
141 |
+
DataParallel(
|
142 |
+
(module): ViTImage2Image(
|
143 |
+
(patch_embed): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
|
144 |
+
(encoder_layers): ModuleList(
|
145 |
+
(0-7): 8 x TransformerEncoderBlock(
|
146 |
+
(attn): LocationBasedMultiheadAttention(
|
147 |
+
(q_proj): Linear(in_features=768, out_features=768, bias=True)
|
148 |
+
(k_proj): Linear(in_features=768, out_features=768, bias=True)
|
149 |
+
(v_proj): Linear(in_features=768, out_features=768, bias=True)
|
150 |
+
(out_proj): Linear(in_features=768, out_features=768, bias=True)
|
151 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
152 |
+
)
|
153 |
+
(ff): Sequential(
|
154 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
155 |
+
(1): ReLU()
|
156 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
157 |
+
)
|
158 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
159 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
160 |
+
(adain): AdaIN(
|
161 |
+
(norm): InstanceNorm1d(768, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
|
162 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
163 |
+
)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
)
|
167 |
+
(decoder_layers): ModuleList(
|
168 |
+
(0-7): 8 x TransformerDecoderBlock(
|
169 |
+
(attn1): LocationBasedMultiheadAttention(
|
170 |
+
(q_proj): Linear(in_features=768, out_features=768, bias=True)
|
171 |
+
(k_proj): Linear(in_features=768, out_features=768, bias=True)
|
172 |
+
(v_proj): Linear(in_features=768, out_features=768, bias=True)
|
173 |
+
(out_proj): Linear(in_features=768, out_features=768, bias=True)
|
174 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
175 |
+
)
|
176 |
+
(attn2): LocationBasedMultiheadAttention(
|
177 |
+
(q_proj): Linear(in_features=768, out_features=768, bias=True)
|
178 |
+
(k_proj): Linear(in_features=768, out_features=768, bias=True)
|
179 |
+
(v_proj): Linear(in_features=768, out_features=768, bias=True)
|
180 |
+
(out_proj): Linear(in_features=768, out_features=768, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(ff): Sequential(
|
184 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
185 |
+
(1): ReLU()
|
186 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
187 |
+
)
|
188 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
189 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
190 |
+
(norm3): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
191 |
+
(norm4): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
192 |
+
(adain1): AdaIN(
|
193 |
+
(norm): InstanceNorm1d(768, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
|
194 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
195 |
+
)
|
196 |
+
(adain2): AdaIN(
|
197 |
+
(norm): InstanceNorm1d(768, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
|
198 |
+
(fc): Linear(in_features=768, out_features=1536, bias=True)
|
199 |
+
)
|
200 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
(swin_layers): ModuleList(
|
204 |
+
(0-7): 8 x SwinTransformerBlock(
|
205 |
+
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
206 |
+
(attn): MultiheadAttention(
|
207 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
208 |
+
)
|
209 |
+
(mlp): Sequential(
|
210 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
211 |
+
(1): GELU(approximate='none')
|
212 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
213 |
+
)
|
214 |
+
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
215 |
+
)
|
216 |
+
)
|
217 |
+
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(mlp_head): Sequential(
|
219 |
+
(0): Linear(in_features=768, out_features=3072, bias=True)
|
220 |
+
(1): GELU(approximate='none')
|
221 |
+
(2): Linear(in_features=3072, out_features=768, bias=True)
|
222 |
+
)
|
223 |
+
(refinement): RefinementBlock(
|
224 |
+
(conv): Conv2d(768, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
225 |
+
(bn): BatchNorm2d(3, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
226 |
+
(relu): ReLU(inplace=True)
|
227 |
+
)
|
228 |
+
(style_encoder): Sequential(
|
229 |
+
(0): Conv2d(3, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
230 |
+
(1): ReLU()
|
231 |
+
(2): AdaptiveAvgPool2d(output_size=1)
|
232 |
+
(3): Flatten(start_dim=1, end_dim=-1)
|
233 |
+
(4): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
)
|
235 |
+
)
|
236 |
+
)
|
237 |
+
```
|
238 |
+
|
239 |
+
**Training hardware:** Each of the models were trained on 2 x T4 GPUs (multi-GPU training). For this reason, linear attention modules were implemented as ring (distributed) attention during training.
|
240 |
+
**Total Training Compute Throughput:** 4.13 TFLOPS
|
241 |
+
**Total Logged Training Time:** ~210 hours (total time split across four models including overhead)
|
242 |
+
**Start Time:** 09-13-2024
|
243 |
+
**End Time:** 09-21-2024
|
244 |
+
**Checkpoint Size:**
|
245 |
+
- v1_1: 855 MB
|
246 |
+
- v1_2: 764 MB
|
247 |
+
- v1_3: 355 MB
|
248 |
+
- v2_2: 11 MB
|
249 |
|
250 |
## Evaluation
|
251 |
|