--- license: mit library_name: peft tags: - generated_from_trainer base_model: xlm-roberta-base metrics: - accuracy - f1 model-index: - name: lora_fine_tuned_copa_XLMroberta results: [] --- # lora_fine_tuned_copa_XLMroberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Accuracy: 0.52 - F1: 0.5067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7167 | 1.0 | 50 | 0.6931 | 0.45 | 0.4514 | | 0.6965 | 2.0 | 100 | 0.6931 | 0.45 | 0.4514 | | 0.7021 | 3.0 | 150 | 0.6931 | 0.53 | 0.5310 | | 0.701 | 4.0 | 200 | 0.6931 | 0.46 | 0.4613 | | 0.7091 | 5.0 | 250 | 0.6931 | 0.51 | 0.5104 | | 0.6972 | 6.0 | 300 | 0.6931 | 0.5 | 0.4896 | | 0.6983 | 7.0 | 350 | 0.6931 | 0.56 | 0.56 | | 0.6961 | 8.0 | 400 | 0.6931 | 0.52 | 0.5067 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.1.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1