Upload quantumjump_195.py
Browse files- quantumjump_195.py +115 -0
quantumjump_195.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""quantumjump.195
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1ajVqXJvko89LMeo0a9e_uB75te2fLwMY
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
import tensorflow as tf
|
12 |
+
from tensorflow import keras
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
# %matplotlib inline
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()
|
18 |
+
|
19 |
+
len(X_train)
|
20 |
+
|
21 |
+
len(X_test)
|
22 |
+
|
23 |
+
X_train[0].shape
|
24 |
+
|
25 |
+
X_train[0]
|
26 |
+
|
27 |
+
plt.matshow(X_train[2])
|
28 |
+
|
29 |
+
y_train[2]
|
30 |
+
|
31 |
+
y_train[:5]
|
32 |
+
|
33 |
+
X_train.shape
|
34 |
+
|
35 |
+
X_train = X_train / 255
|
36 |
+
X_test = X_test / 255
|
37 |
+
|
38 |
+
X_train[0]
|
39 |
+
|
40 |
+
X_train_flattened = X_train.reshape(len(X_train),28*28)
|
41 |
+
X_test_flattened = X_test.reshape(len(X_test),28*28)
|
42 |
+
|
43 |
+
X_train_flattened.shape
|
44 |
+
|
45 |
+
X_train_flattened[0]
|
46 |
+
|
47 |
+
model = keras.Sequential([
|
48 |
+
keras.layers.Dense(10, input_shape=(784,),activation='sigmoid')
|
49 |
+
])
|
50 |
+
|
51 |
+
model.compile(
|
52 |
+
optimizer='adam',
|
53 |
+
loss='sparse_categorical_crossentropy',
|
54 |
+
metrics=['accuracy']
|
55 |
+
)
|
56 |
+
model.fit(X_train_flattened, y_train, epochs=5)
|
57 |
+
|
58 |
+
model.evaluate(X_test_flattened, y_test)
|
59 |
+
|
60 |
+
plt.matshow(X_test[0])
|
61 |
+
|
62 |
+
y_predicted = model.predict(X_test_flattened)
|
63 |
+
y_predicted[0]
|
64 |
+
|
65 |
+
np.argmax(y_predicted[1])
|
66 |
+
|
67 |
+
y_predicted_labels = [np.argmax(i) for i in y_predicted]
|
68 |
+
y_predicted_labels[:5]
|
69 |
+
|
70 |
+
y_test[:5]
|
71 |
+
|
72 |
+
cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels)
|
73 |
+
cm
|
74 |
+
|
75 |
+
import seaborn as sn
|
76 |
+
plt.figure(figsize = (10,7))
|
77 |
+
sn.heatmap(cm, annot=True, fmt='d')
|
78 |
+
plt.xlabel('Predicted')
|
79 |
+
plt.ylabel('Truth')
|
80 |
+
|
81 |
+
model = keras.Sequential([
|
82 |
+
keras.layers.Dense(100, input_shape=(784,), activation='relu'),
|
83 |
+
keras.layers.Dense(10, activation='sigmoid')
|
84 |
+
])
|
85 |
+
|
86 |
+
model.compile(
|
87 |
+
optimizer='adam',
|
88 |
+
loss='sparse_categorical_crossentropy',
|
89 |
+
metrics=['accuracy']
|
90 |
+
)
|
91 |
+
model.fit(X_train_flattened, y_train, epochs=5)
|
92 |
+
|
93 |
+
model.evaluate(X_test_flattened,y_test)
|
94 |
+
|
95 |
+
y_predicted = model.predict(X_test_flattened)
|
96 |
+
y_predicted_labels = [np.argmax(i) for i in y_predicted]
|
97 |
+
cm = tf.math.confusion_matrix(labels=y_test, predictions=y_predicted_labels)
|
98 |
+
|
99 |
+
plt.figure(figsize = (10,7))
|
100 |
+
sn.heatmap(cm, annot=True, fmt='d')
|
101 |
+
plt.xlabel('Predicted')
|
102 |
+
plt.ylabel('Truth')
|
103 |
+
|
104 |
+
model = keras.Sequential([
|
105 |
+
keras.layers.Dense(100, input_shape=(784,),activation='relu'),
|
106 |
+
keras.layers.Dense(10, activation='sigmoid')
|
107 |
+
])
|
108 |
+
|
109 |
+
model.compile(
|
110 |
+
optimizer = 'adam',
|
111 |
+
loss='sparse_categorical_crossentropy',
|
112 |
+
metrics=['accuracy']
|
113 |
+
)
|
114 |
+
|
115 |
+
model.fit(X_train_flattened, y_train, epochs=5)
|