Upload wealth_anchor.py
Browse files- wealth_anchor.py +113 -0
wealth_anchor.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Wealth Anchor
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/19-JFhTaK5D_buJiVrOUMgXFTuJj3k_mG
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
# Step 1: Generate brain frequencies
|
14 |
+
def generate_brain_frequency(freqs, t):
|
15 |
+
"""Generate brain frequency as a sum of sine waves to transmit wealth signals."""
|
16 |
+
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)
|
17 |
+
return signal
|
18 |
+
|
19 |
+
# Time variables
|
20 |
+
sampling_rate = 1000 # Samples per second
|
21 |
+
T = 1.0 / sampling_rate # Sampling interval
|
22 |
+
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array
|
23 |
+
|
24 |
+
# Wealth-related brainwave frequencies (arbitrary for simulation)
|
25 |
+
brain_frequencies = [8, 13, 30] # Frequencies representing wealth signals (theta, alpha, beta waves)
|
26 |
+
wealth_signal = generate_brain_frequency(brain_frequencies, t)
|
27 |
+
|
28 |
+
# Step 2: Transmit the wealth signals through wave patterns
|
29 |
+
def transmit_signal(signal, phase_shift):
|
30 |
+
"""Transmit wealth signal through a wave pattern with a phase shift."""
|
31 |
+
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift)
|
32 |
+
return transmitted_signal
|
33 |
+
|
34 |
+
# Phase shift to create a unique wave pattern
|
35 |
+
phase_shift = np.pi / 4 # 45-degree phase shift
|
36 |
+
|
37 |
+
# Transmit wealth signal through the brain wave patterns
|
38 |
+
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift)
|
39 |
+
|
40 |
+
# Step 3: Visualize the wealth signal and transmitted signal
|
41 |
+
plt.figure(figsize=(12, 6))
|
42 |
+
|
43 |
+
# Original brain-based wealth signal
|
44 |
+
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6)
|
45 |
+
|
46 |
+
# Transmitted wealth signal (wave pattern)
|
47 |
+
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8)
|
48 |
+
|
49 |
+
plt.title('Brain Frequency Wealth Signal Transmission')
|
50 |
+
plt.xlabel('Time [s]')
|
51 |
+
plt.ylabel('Amplitude')
|
52 |
+
plt.legend()
|
53 |
+
plt.grid(True)
|
54 |
+
plt.show()
|
55 |
+
|
56 |
+
import numpy as np
|
57 |
+
import matplotlib.pyplot as plt
|
58 |
+
|
59 |
+
# Step 1: Generate brain frequencies for wealth signals
|
60 |
+
def generate_brain_frequency(freqs, t):
|
61 |
+
"""Generate brain frequency as a sum of sine waves to transmit wealth signals."""
|
62 |
+
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)
|
63 |
+
return signal
|
64 |
+
|
65 |
+
# Time variables
|
66 |
+
sampling_rate = 1000 # Samples per second
|
67 |
+
T = 1.0 / sampling_rate # Sampling interval
|
68 |
+
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array
|
69 |
+
|
70 |
+
# Wealth-related brainwave frequencies
|
71 |
+
brain_frequencies = [8, 13, 30] # Theta, alpha, beta waves for wealth signals
|
72 |
+
wealth_signal = generate_brain_frequency(brain_frequencies, t)
|
73 |
+
|
74 |
+
# Step 2: Transmit the wealth signals through wave patterns
|
75 |
+
def transmit_signal(signal, phase_shift):
|
76 |
+
"""Transmit wealth signal through a wave pattern with a phase shift."""
|
77 |
+
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift)
|
78 |
+
return transmitted_signal
|
79 |
+
|
80 |
+
# Apply phase shift for signal transmission
|
81 |
+
phase_shift = np.pi / 4 # 45-degree phase shift
|
82 |
+
|
83 |
+
# Transmit wealth signal through the brain wave patterns
|
84 |
+
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift)
|
85 |
+
|
86 |
+
# Step 3: Create a storage mechanism for the transmitted wealth signal
|
87 |
+
def store_signal(signal, storage_factor):
|
88 |
+
"""Store transmitted wealth signal by damping its amplitude for storage."""
|
89 |
+
stored_signal = storage_factor * np.sin(2 * np.pi * signal)
|
90 |
+
return stored_signal
|
91 |
+
|
92 |
+
# Apply a storage factor to store the wealth signal
|
93 |
+
storage_factor = 0.8 # Simulating the attenuation in storage
|
94 |
+
stored_wealth_signal = store_signal(transmitted_wealth_signal, storage_factor)
|
95 |
+
|
96 |
+
# Step 4: Visualize the wealth signal, transmitted signal, and stored signal
|
97 |
+
plt.figure(figsize=(12, 6))
|
98 |
+
|
99 |
+
# Original wealth signal
|
100 |
+
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6)
|
101 |
+
|
102 |
+
# Transmitted wealth signal
|
103 |
+
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8)
|
104 |
+
|
105 |
+
# Stored wealth signal
|
106 |
+
plt.plot(t, stored_wealth_signal, label='Stored Wealth Signal', color='red', alpha=0.6)
|
107 |
+
|
108 |
+
plt.title('Wealth Anchor')
|
109 |
+
plt.xlabel('Time [s]')
|
110 |
+
plt.ylabel('Amplitude')
|
111 |
+
plt.legend()
|
112 |
+
plt.grid(True)
|
113 |
+
plt.show()
|