# -*- coding: utf-8 -*- """securecyphercreditcardanalysis.space Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1WKtvyEIBM5bPAPOmwXTGkEAp8mSFNKii """ import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.svm import SVC from sklearn.metrics import classification_report, confusion_matrix import joblib import matplotlib.pyplot as plt input = pd.read_csv('/content/credit_card_fraud_synthetic.csv') data = input.drop(['Timestamp', 'Transaction_Type', 'Location', 'Transaction_ID'], axis = 1) data y = data['Is_Fraudulent'] x = data.drop('Is_Fraudulent', axis = 1) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42) svm_model = SVC(kernel='rbf') svm_model.fit(X_train, y_train) y_pred = svm_model.predict(X_test) print("Confusion Matrix:") print(confusion_matrix(y_test, y_pred)) print("Classification Report:") print(classification_report(y_test, y_pred)) from sklearn.metrics import accuracy_score Accu = accuracy_score(y_test, y_pred) Accu = Accu * 100 print("The Accuracy of the model is ", round(Accu, 2), "%")