Create securecypher.space.py
Browse files- securecypher.space.py +145 -0
securecypher.space.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from matplotlib.animation import FuncAnimation
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
|
| 8 |
+
class WaveformVisualizer:
|
| 9 |
+
def __init__(self, processor, input_data, sampling_rate=1000):
|
| 10 |
+
self.processor = processor
|
| 11 |
+
self.input_data = input_data
|
| 12 |
+
self.sampling_rate sampling_rate
|
| 13 |
+
self.time = np.arange(input_data.shape[1]) / sampling_rate
|
| 14 |
+
|
| 15 |
+
class SecureWaveformProcessor(nn.Module):
|
| 16 |
+
def __init__(self, input_size, hidden_size, sampling_rate=1000):
|
| 17 |
+
super(SecureWaveformProcessor, self).__init__()
|
| 18 |
+
self.layer1 = nn.Linear(input_size, hidden_size)
|
| 19 |
+
self.layer2 = nn.Linear(hidden_size, input_size)
|
| 20 |
+
self.sampling_rate = sampling_rate
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
x = torch.relu(self.layer1(x))
|
| 24 |
+
x = self.layer2(x)
|
| 25 |
+
return x
|
| 26 |
+
|
| 27 |
+
def plot_waveforms(self):
|
| 28 |
+
processed_data = self.forward(input_data)
|
| 29 |
+
self.time = np.arange(input_data.shape[1]) / self.sampling_rate
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
x = torch.relu(self.layer1(x))
|
| 33 |
+
x = self.layer2(x)
|
| 34 |
+
return x
|
| 35 |
+
|
| 36 |
+
def plot_waveforms(self):
|
| 37 |
+
processed_data = self.forward(input_data)
|
| 38 |
+
self.time = np.arange(input_data.shape[1]) / self.sampling_rate
|
| 39 |
+
self.input_data = input_data
|
| 40 |
+
|
| 41 |
+
fig = plt.figure(figsize=(15, 10))
|
| 42 |
+
gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3)
|
| 43 |
+
|
| 44 |
+
ax1 = fig.add_subplot(gs[0, 0])
|
| 45 |
+
self._plot_waveform(self.input_data[0], ax1, "Original Data")
|
| 46 |
+
|
| 47 |
+
ax2 = fig.add_subplot(gs[0, 1])
|
| 48 |
+
self.plot_waveform(processed_data[0], ax2, "Processed Data")
|
| 49 |
+
|
| 50 |
+
ax3 = fig.add_subplot(gs[1, 0])
|
| 51 |
+
self._plot_spectrogram(self.input_data[0], ax3, "Original Visual")
|
| 52 |
+
|
| 53 |
+
ax4 = fig.add_subplot(gs[1, 1])
|
| 54 |
+
self._plot_spectrogram(processed_data[0], x4, "Processed Visual")
|
| 55 |
+
|
| 56 |
+
plt.tight_layout()
|
| 57 |
+
return fig
|
| 58 |
+
|
| 59 |
+
def _plot_waveform(self,data, ax, title):
|
| 60 |
+
data_np = data.detach().numpy()
|
| 61 |
+
ax.plot(self.time, data_np, 'b-', linewidth=1)
|
| 62 |
+
ax.set_title(title)
|
| 63 |
+
ax.set_xlabel('Time (s)')
|
| 64 |
+
ax.set_ylabel('Amplitude')
|
| 65 |
+
ax.grid(True)
|
| 66 |
+
|
| 67 |
+
def _plot_spectrogram(self, data, ax, title):
|
| 68 |
+
data_np = data.detach().numpy
|
| 69 |
+
ax.specgram(data,np, Fs=self.sampling_rate, cmap='viridis')
|
| 70 |
+
ax.set_title(title)
|
| 71 |
+
ax.set_xlabel('Time (s)')
|
| 72 |
+
ax.set_ylabel('Frequency (Hz)')
|
| 73 |
+
|
| 74 |
+
def animate_processing(self, frame=50):
|
| 75 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))
|
| 76 |
+
|
| 77 |
+
processed_data = self.forward(self.input_data)
|
| 78 |
+
data_original = self.input_data[0].detach().numpy()
|
| 79 |
+
data_processed = processed_data[0].detach().numpy()
|
| 80 |
+
|
| 81 |
+
line1, = ax1.plot([], [], 'b-', label='Original')
|
| 82 |
+
line2, = ax2.plot([], [], 'r-', label='Processed')
|
| 83 |
+
|
| 84 |
+
def init():
|
| 85 |
+
ax1.set_xlim(0, self.time[-1])
|
| 86 |
+
ax1.set_ylim(data_original.min()*1.2, data_original.max()*1.2)
|
| 87 |
+
ax2.set_xlim(0, self.time[-1])
|
| 88 |
+
ax2.set_ylim(data_processed.min()*1.2, data_processed.max()*1.2)
|
| 89 |
+
|
| 90 |
+
ax1.set_title('Original Data')
|
| 91 |
+
ax2.set_title('Processed Visual')
|
| 92 |
+
ax1.grid(True)
|
| 93 |
+
ax2.grid(True)
|
| 94 |
+
ax1.legend()
|
| 95 |
+
ax2.legend()
|
| 96 |
+
|
| 97 |
+
return line1, line2
|
| 98 |
+
|
| 99 |
+
def animate(frame):
|
| 100 |
+
idx = int((frame / frames) * len(self.time))
|
| 101 |
+
line1.set_data(self.time[:idx], data_original[:idx])
|
| 102 |
+
line2.set_data(self.time[:idx], data_processed[:idx])
|
| 103 |
+
return line1, line2
|
| 104 |
+
|
| 105 |
+
anim = FuncAnimation(fig, animate, frames=frames,
|
| 106 |
+
init_func=init, blit=True,
|
| 107 |
+
interval=50)
|
| 108 |
+
|
| 109 |
+
plt.tight_layout()
|
| 110 |
+
return anim
|
| 111 |
+
|
| 112 |
+
__name__== "__main__":
|
| 113 |
+
input_size = 1000
|
| 114 |
+
batch_size = 32
|
| 115 |
+
sampling_rate = 1000
|
| 116 |
+
|
| 117 |
+
processor = SecureWaveformProcessor(input_size=input_size, hidden_size=64, sampling_rate=sampling_rate)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
t = np.linspace(0, 10, input_size)
|
| 121 |
+
base_signal = np.sin(2 * np.pi * 1 * t) + 0.5 * np.sin(2 * np.pi * 2 * t)
|
| 122 |
+
noise = np.random.normal(0, 0.1, input_size)
|
| 123 |
+
signal = base_signal + noise
|
| 124 |
+
|
| 125 |
+
input_data = torch.tensor(np.tile(signal, (batch_size, 1)), dtype=torch.float32)
|
| 126 |
+
processor = SecureWaveformProcessor(input_size=input_size, hidden_size=64)
|
| 127 |
+
|
| 128 |
+
visualizer = WaveformVisualizer(processor, input_data)
|
| 129 |
+
|
| 130 |
+
fig_static = processor.plot_waveforms()
|
| 131 |
+
plt.show()
|
| 132 |
+
|
| 133 |
+
anim = processor.animate_processing()
|
| 134 |
+
plt.show()
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|