# -*- coding: utf-8 -*- """1040_249_949 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1T8VCDZs5tRg-mTI4qNqCct_92fcd_7Rl """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import warnings as w w.filterwarnings('ignore') df=pd.read_csv('//content/1000_ml_jobs_us.csv') df.head() df.isnull().sum() df.drop(columns=['company_website', 'company_description', 'job_description_text', 'Unnamed: 0'], inplace=True) df['company_address_locality'] = df['company_address_locality'].fillna(df['company_address_locality'].mode()[0]) df['company_address_region'] = df['company_address_region'].fillna(df['company_address_region'].mode()[0]) df['seniority_level'] = (df['seniority_level'].fillna(df['seniority_level']).mode()[0]) df.info() df['job_posted_date'] = pd.to_datetime(df['job_posted_date']) df['company_address_locality'].value_counts().head(10).plot(kind='bar', title='Top 10 Localities') df['company_address_region'].value_counts().head(10).plot(kind='bar', title='Top 10 Regions') df['company_name'].value_counts().head(10).plot(kind='barh', title='Top 10 Hiring Companies') df['seniority_level'].value_counts().plot(kind='pie', autopct='%1.1f%%', title='Seniority Level Distribution') df['job_title'].value_counts().head(15).plot(kind='bar', title='Top 15 Job Titles') import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, accuracy_score import warnings as w w.filterwarnings('ignore') # Load data (assuming the previous steps for loading and cleaning the data were successful) # df=pd.read_csv('//content/1000_ml_jobs_us.csv') # ... (previous data cleaning and preparation steps) ... le = LabelEncoder() # Apply LabelEncoder to all relevant categorical columns outside the training loop for col in ['job_posted_date', 'company_address_locality', 'company_address_region', 'company_name', 'job_title']: df[col] = le.fit_transform(df[col].astype(str)) # Define features (X) and target (y) after encoding X = df.drop('seniority_level', axis=1) y = le.fit_transform(df['seniority_level']) # Encode the target variable as well # Perform the train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and train the model model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # Make predictions and evaluate the model y_pred = model.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred))