File size: 22,607 Bytes
8481452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc2395e
 
8481452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## GenomeKit foundations\n",
    "\n",
    "We're going to be using an awesome library called GenomeKit to extract DNA sequences and build 4/6 track representations of mRNA transcripts, which will be used as input for Orthrus. GenomeKit makes it easy to work with genomic data, such as sequences and annotations, by providing tools to access and manipulate reference genomes and variants efficiently. It's built by the awesome folks at Deep Genomics\n",
    "\n",
    "For more details, you can refer to the [GenomeKit documentation](https://deepgenomics.github.io/GenomeKit/api.html).\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "import genome_kit as gk\n",
    "from genome_kit import Genome, Interval\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'CTCTTATGCTCGGGTGATCC'"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "genome = Genome(\"gencode.v29\")\n",
    "interval = Interval(\"chr7\", \"+\", 117120016, 117120036, genome)\n",
    "genome.dna(interval)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5447\n"
     ]
    }
   ],
   "source": [
    "genes = [x for x in genome.genes if x.name == 'PKP1']\n",
    "transcripts = genes[0].transcripts\n",
    "t = [t for t in transcripts if t.id == 'ENST00000263946.7'][0]\n",
    "print(sum([len(x) for x in t.exons]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "def find_transcript(genome, transcript_id):\n",
    "    \"\"\"Find a transcript in a genome by transcript ID.\n",
    "    \n",
    "    Args:\n",
    "        genome (object): The genome object containing a list of transcripts.\n",
    "        transcript_id (str): The ID of the transcript to find.\n",
    "        \n",
    "    Returns:\n",
    "        object: The transcript object, if found.\n",
    "        \n",
    "    Raises:\n",
    "        ValueError: If no transcript with the given ID is found.\n",
    "    \n",
    "    Example:\n",
    "        >>> # Create sample transcripts and a genome\n",
    "        >>> transcript1 = 'ENST00000263946'\n",
    "        >>> genome = Genome(\"gencode.v29\")\n",
    "        >>> result = find_transcript(genome, 'ENST00000335137')\n",
    "        >>> print(result.id)\n",
    "        <Transcript ENST00000263946.7 of PKP1>\n",
    "        >>> # If transcript ID is not found\n",
    "        >>> find_transcript(genome, 'ENST00000000000')\n",
    "        ValueError: Transcript with ID ENST00000000000 not found.\n",
    "    \"\"\"\n",
    "    transcripts = [x for x in genome.transcripts if x.id.split('.')[0] == transcript_id]\n",
    "    if not transcripts:\n",
    "        raise ValueError(f\"Transcript with ID {transcript_id} not found.\")\n",
    "    \n",
    "    return transcripts[0]\n",
    "\n",
    "def find_transcript_by_gene_name(genome, gene_name):\n",
    "    \"\"\"Find all transcripts in a genome by gene name.\n",
    "    \n",
    "    Args:\n",
    "        genome (object): The genome object containing a list of transcripts.\n",
    "        gene_name (str): The name of the gene whose transcripts are to be found.\n",
    "        \n",
    "    Returns:\n",
    "        list: A list of transcript objects corresponding to the given gene name.\n",
    "        \n",
    "    Raises:\n",
    "        ValueError: If no transcripts for the given gene name are found.\n",
    "    \n",
    "    Example:\n",
    "        >>> # Find transcripts by gene name\n",
    "        >>> transcripts = find_transcript_by_gene_name(genome, 'PKP1')\n",
    "        >>> print(transcripts)\n",
    "        [<Transcript ENST00000367324.7 of PKP1>,\n",
    "        <Transcript ENST00000263946.7 of PKP1>,\n",
    "        <Transcript ENST00000352845.3 of PKP1>,\n",
    "        <Transcript ENST00000475988.1 of PKP1>,\n",
    "        <Transcript ENST00000477817.1 of PKP1>]        \n",
    "        >>> # If gene name is not found\n",
    "        >>> find_transcript_by_gene_name(genome, 'XYZ')\n",
    "        ValueError: No transcripts found for gene name XYZ.\n",
    "    \"\"\"\n",
    "    genes = [x for x in genome.genes if x.name == gene_name]\n",
    "    if not genes:\n",
    "        raise ValueError(f\"No genes found for gene name {gene_name}.\")\n",
    "    if len(genes) > 1:\n",
    "        print(f\"Warning: More than one gene found for gene name {gene_name}.\")\n",
    "        print('Concatenating transcripts from all genes.')\n",
    "        \n",
    "    transcripts = []\n",
    "    for gene in genes:\n",
    "        transcripts += gene.transcripts\n",
    "    return transcripts\n",
    "\n",
    "def create_cds_track(t):\n",
    "    \"\"\"Create a track of the coding sequence of a transcript.\n",
    "    Use the exons of the transcript to create a track where the first position of the codon is one.\n",
    "    \n",
    "    Args:\n",
    "        t (gk.Transcript): The transcript object.\n",
    "    \"\"\"\n",
    "    cds_intervals = t.cdss\n",
    "    utr3_intervals = t.utr3s\n",
    "    utr5_intervals = t.utr5s\n",
    "    \n",
    "    len_utr3 = sum([len(x) for x in utr3_intervals])\n",
    "    len_utr5 = sum([len(x) for x in utr5_intervals])\n",
    "    len_cds = sum([len(x) for x in cds_intervals])\n",
    "    \n",
    "    # create a track where first position of the codon is one\n",
    "    cds_track = np.zeros(len_cds, dtype=int)\n",
    "    # set every third position to 1\n",
    "    cds_track[0::3] = 1\n",
    "    # concat with zeros of utr3 and utr5\n",
    "    cds_track = np.concatenate([np.zeros(len_utr5, dtype=int), cds_track, np.zeros(len_utr3, dtype=int)])\n",
    "    return cds_track\n",
    "\n",
    "def create_splice_track(t):\n",
    "    \"\"\"Create a track of the splice sites of a transcript.\n",
    "    The track is a 1D array where the positions of the splice sites are 1.\n",
    "\n",
    "    Args:\n",
    "        t (gk.Transcript): The transcript object.\n",
    "    \"\"\"\n",
    "    len_utr3 = sum([len(x) for x in t.utr3s])\n",
    "    len_utr5 = sum([len(x) for x in t.utr5s])\n",
    "    len_cds = sum([len(x) for x in t.cdss])\n",
    "    \n",
    "    len_mrna = len_utr3 + len_utr5 + len_cds\n",
    "    splicing_track = np.zeros(len_mrna, dtype=int)\n",
    "    cumulative_len = 0\n",
    "    for exon in t.exons:\n",
    "        cumulative_len += len(exon)\n",
    "        splicing_track[cumulative_len - 1:cumulative_len] = 1\n",
    "        \n",
    "    return splicing_track\n",
    "\n",
    "# convert to one hot\n",
    "def seq_to_oh(seq):\n",
    "    oh = np.zeros((len(seq), 4), dtype=int)\n",
    "    for i, base in enumerate(seq):\n",
    "        if base == 'A':\n",
    "            oh[i, 0] = 1\n",
    "        elif base == 'C':\n",
    "            oh[i, 1] = 1\n",
    "        elif base == 'G':\n",
    "            oh[i, 2] = 1\n",
    "        elif base == 'T':\n",
    "            oh[i, 3] = 1\n",
    "    return oh\n",
    "\n",
    "def create_one_hot_encoding(t):\n",
    "    \"\"\"Create a track of the sequence of a transcript.\n",
    "    The track is a 2D array where the rows are the positions\n",
    "    and the columns are the one-hot encoding of the bases.\n",
    "\n",
    "    Args\n",
    "        t (gk.Transcript): The transcript object.\n",
    "    \"\"\"\n",
    "    seq = \"\".join([genome.dna(exon) for exon in t.exons])\n",
    "    oh = \n",
    "    _oh(seq)\n",
    "    return oh\n",
    "\n",
    "def create_six_track_encoding(t, channels_last=False):\n",
    "    \"\"\"Create a track of the sequence of a transcript.\n",
    "    The track is a 2D array where the rows are the positions\n",
    "    and the columns are the one-hot encoding of the bases.\n",
    "    Concatenate the one-hot encoding with the cds track and the splice track.\n",
    "\n",
    "    Args\n",
    "        t (gk.Transcript): The transcript object.\n",
    "    \"\"\"\n",
    "    oh = create_one_hot_encoding(t)\n",
    "    cds_track = create_cds_track(t)\n",
    "    splice_track = create_splice_track(t)\n",
    "    six_track = np.concatenate([oh, cds_track[:, None], splice_track[:, None]], axis=1)\n",
    "    if not channels_last:\n",
    "        six_track = six_track.T\n",
    "    return six_track"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "import math\n",
    "from functools import partial\n",
    "import os\n",
    "import json\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "\n",
    "from mamba_ssm.modules.mamba_simple import Mamba, Block\n",
    "from huggingface_hub import PyTorchModelHubMixin\n",
    "\n",
    "def create_block(\n",
    "    d_model,\n",
    "    ssm_cfg=None,\n",
    "    norm_epsilon=1e-5,\n",
    "    residual_in_fp32=False,\n",
    "    fused_add_norm=False,\n",
    "    layer_idx=None,\n",
    "    device=None,\n",
    "    dtype=None,\n",
    "):\n",
    "    if ssm_cfg is None:\n",
    "        ssm_cfg = {}\n",
    "    factory_kwargs = {\"device\": device, \"dtype\": dtype}\n",
    "    mix_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)\n",
    "    norm_cls = partial(nn.LayerNorm, eps=norm_epsilon, **factory_kwargs)\n",
    "    block = Block(\n",
    "        d_model,\n",
    "        mix_cls,\n",
    "        norm_cls=norm_cls,\n",
    "        fused_add_norm=fused_add_norm,\n",
    "        residual_in_fp32=residual_in_fp32,\n",
    "    )\n",
    "    block.layer_idx = layer_idx\n",
    "    return block\n",
    "\n",
    "\n",
    "class MixerModel(\n",
    "    nn.Module,\n",
    "    PyTorchModelHubMixin,\n",
    "):\n",
    "\n",
    "    def __init__(\n",
    "        self,\n",
    "        d_model: int,\n",
    "        n_layer: int,\n",
    "        input_dim: int,\n",
    "        ssm_cfg=None,\n",
    "        norm_epsilon: float = 1e-5,\n",
    "        rms_norm: bool = False,\n",
    "        initializer_cfg=None,\n",
    "        fused_add_norm=False,\n",
    "        residual_in_fp32=False,\n",
    "        device=None,\n",
    "        dtype=None,\n",
    "    ) -> None:\n",
    "        factory_kwargs = {\"device\": device, \"dtype\": dtype}\n",
    "        super().__init__()\n",
    "        self.residual_in_fp32 = residual_in_fp32\n",
    "\n",
    "        self.embedding = nn.Linear(input_dim, d_model, **factory_kwargs)\n",
    "\n",
    "        self.layers = nn.ModuleList(\n",
    "            [\n",
    "                create_block(\n",
    "                    d_model,\n",
    "                    ssm_cfg=ssm_cfg,\n",
    "                    norm_epsilon=norm_epsilon,\n",
    "                    residual_in_fp32=residual_in_fp32,\n",
    "                    fused_add_norm=fused_add_norm,\n",
    "                    layer_idx=i,\n",
    "                    **factory_kwargs,\n",
    "                )\n",
    "                for i in range(n_layer)\n",
    "            ]\n",
    "        )\n",
    "\n",
    "        self.norm_f = nn.LayerNorm(d_model, eps=norm_epsilon, **factory_kwargs)\n",
    "\n",
    "        self.apply(\n",
    "            partial(\n",
    "                _init_weights,\n",
    "                n_layer=n_layer,\n",
    "                **(initializer_cfg if initializer_cfg is not None else {}),\n",
    "            )\n",
    "        )\n",
    "\n",
    "    def forward(self, x, inference_params=None, channel_last=False):\n",
    "        if not channel_last:\n",
    "            x = x.transpose(1, 2)\n",
    "\n",
    "        hidden_states = self.embedding(x)\n",
    "        residual = None\n",
    "        for layer in self.layers:\n",
    "            hidden_states, residual = layer(\n",
    "                hidden_states, residual, inference_params=inference_params\n",
    "            )\n",
    "\n",
    "        residual = (hidden_states + residual) if residual is not None else hidden_states\n",
    "        hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))\n",
    "\n",
    "        hidden_states = hidden_states\n",
    "\n",
    "        return hidden_states\n",
    "\n",
    "    def representation(\n",
    "        self,\n",
    "        x: torch.Tensor,\n",
    "        lengths: torch.Tensor,\n",
    "        channel_last: bool = False,\n",
    "    ) -> torch.Tensor:\n",
    "        \"\"\"Get global representation of input data.\n",
    "\n",
    "        Args:\n",
    "            x: Data to embed. Has shape (B x C x L) if not channel_last.\n",
    "            lengths: Unpadded length of each data input.\n",
    "            channel_last: Expects input of shape (B x L x C).\n",
    "\n",
    "        Returns:\n",
    "            Global representation vector of shape (B x H).\n",
    "        \"\"\"\n",
    "        out = self.forward(x, channel_last=channel_last)\n",
    "\n",
    "        mean_tensor = mean_unpadded(out, lengths)\n",
    "        return mean_tensor\n",
    "\n",
    "\n",
    "def mean_unpadded(x: torch.Tensor, lengths: torch.Tensor) -> torch.Tensor:\n",
    "    \"\"\"Take mean of tensor across second dimension without padding.\n",
    "\n",
    "    Args:\n",
    "        x: Tensor to take unpadded mean. Has shape (B x L x H).\n",
    "        lengths: Tensor of unpadded lengths. Has shape (B)\n",
    "\n",
    "    Returns:\n",
    "        Mean tensor of shape (B x H).\n",
    "    \"\"\"\n",
    "    mask = torch.arange(x.size(1), device=x.device)[None, :] < lengths[:, None]\n",
    "    masked_tensor = x * mask.unsqueeze(-1)\n",
    "    sum_tensor = masked_tensor.sum(dim=1)\n",
    "    mean_tensor = sum_tensor / lengths.unsqueeze(-1).float()\n",
    "\n",
    "    return mean_tensor\n",
    "\n",
    "\n",
    "def _init_weights(\n",
    "    module,\n",
    "    n_layer,\n",
    "    initializer_range=0.02,  # Now only used for embedding layer.\n",
    "    rescale_prenorm_residual=True,\n",
    "    n_residuals_per_layer=1,  # Change to 2 if we have MLP\n",
    "):\n",
    "    if isinstance(module, nn.Linear):\n",
    "        if module.bias is not None:\n",
    "            if not getattr(module.bias, \"_no_reinit\", False):\n",
    "                nn.init.zeros_(module.bias)\n",
    "    elif isinstance(module, nn.Embedding):\n",
    "        nn.init.normal_(module.weight, std=initializer_range)\n",
    "\n",
    "    if rescale_prenorm_residual:\n",
    "        for name, p in module.named_parameters():\n",
    "            if name in [\"out_proj.weight\", \"fc2.weight\"]:\n",
    "                nn.init.kaiming_uniform_(p, a=math.sqrt(5))\n",
    "                with torch.no_grad():\n",
    "                    p /= math.sqrt(n_residuals_per_layer * n_layer)\n",
    "\n",
    "def load_model(run_path: str, checkpoint_name: str) -> nn.Module:\n",
    "    \"\"\"Load trained model located at specified path.\n",
    "\n",
    "    Args:\n",
    "        run_path: Path where run data is located.\n",
    "        checkpoint_name: Name of model checkpoint to load.\n",
    "\n",
    "    Returns:\n",
    "        Model with loaded weights.\n",
    "    \"\"\"\n",
    "    model_config_path = os.path.join(run_path, \"model_config.json\")\n",
    "    data_config_path = os.path.join(run_path, \"data_config.json\")\n",
    "\n",
    "    with open(model_config_path, \"r\") as f:\n",
    "        model_params = json.load(f)\n",
    "\n",
    "    # TODO: Temp backwards compatibility\n",
    "    if \"n_tracks\" not in model_params:\n",
    "        with open(data_config_path, \"r\") as f:\n",
    "            data_params = json.load(f)\n",
    "        n_tracks = data_params[\"n_tracks\"]\n",
    "    else:\n",
    "        n_tracks = model_params[\"n_tracks\"]\n",
    "\n",
    "    model_path = os.path.join(run_path, checkpoint_name)\n",
    "\n",
    "    model = MixerModel(\n",
    "        d_model=model_params[\"ssm_model_dim\"],\n",
    "        n_layer=model_params[\"ssm_n_layers\"],\n",
    "        input_dim=n_tracks\n",
    "    )\n",
    "    checkpoint = torch.load(model_path, map_location=torch.device('cpu'))\n",
    "\n",
    "    state_dict = {}\n",
    "    for k, v in checkpoint[\"state_dict\"].items():\n",
    "        if k.startswith(\"model\"):\n",
    "            state_dict[k.lstrip(\"model\")[1:]] = v\n",
    "\n",
    "    model.load_state_dict(state_dict)\n",
    "    return model\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "MixerModel(\n",
      "  (embedding): Linear(in_features=6, out_features=512, bias=True)\n",
      "  (layers): ModuleList(\n",
      "    (0-5): 6 x Block(\n",
      "      (mixer): Mamba(\n",
      "        (in_proj): Linear(in_features=512, out_features=2048, bias=False)\n",
      "        (conv1d): Conv1d(1024, 1024, kernel_size=(4,), stride=(1,), padding=(3,), groups=1024)\n",
      "        (act): SiLU()\n",
      "        (x_proj): Linear(in_features=1024, out_features=64, bias=False)\n",
      "        (dt_proj): Linear(in_features=32, out_features=1024, bias=True)\n",
      "        (out_proj): Linear(in_features=1024, out_features=512, bias=False)\n",
      "      )\n",
      "      (norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
      "    )\n",
      "  )\n",
      "  (norm_f): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
      ")\n"
     ]
    }
   ],
   "source": [
    "run_name=\"ssm_6_512_lr0.001_wd5e-05_mask0.15_seed0_splice_all_basic_eutheria_gene-dict\"\n",
    "checkpoint=\"epoch=22-step=20000.ckpt\"\n",
    "model_repository=\"/scratch/hdd001/home/phil/msk_backup/runs/\"\n",
    "model = load_model(f\"{model_repository}{run_name}\", checkpoint_name=checkpoint)\n",
    "model = model.to(torch.device('cuda'))\n",
    "print(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[<Transcript ENST00000380152.7 of BRCA2>, <Transcript ENST00000544455.5 of BRCA2>, <Transcript ENST00000530893.6 of BRCA2>, <Transcript ENST00000614259.1 of BRCA2>, <Transcript ENST00000528762.1 of BRCA2>, <Transcript ENST00000470094.1 of BRCA2>, <Transcript ENST00000533776.1 of BRCA2>]\n",
      "[11986, 10984, 2011, 7950, 495, 842, 523]\n",
      "torch.Size([1, 6, 11986])\n",
      "torch.Size([1, 512])\n"
     ]
    }
   ],
   "source": [
    "transcripts = find_transcript_by_gene_name(genome, 'BRCA2')\n",
    "print(transcripts)\n",
    "print([sum(len(e) for e in t.exons) for t in transcripts])\n",
    "t = transcripts[0]\n",
    "sixt = create_six_track_encoding(t)\n",
    "sixt = torch.tensor(sixt, dtype=torch.float32)\n",
    "sixt = sixt.unsqueeze(0)\n",
    "print(sixt.shape)\n",
    "sixt = sixt.to(device='cuda')\n",
    "lengths = torch.tensor([sixt.shape[2]]).to(device='cuda')\n",
    "embedding = model.representation(sixt, lengths)\n",
    "print(embedding.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "MixerModel(\n",
      "  (embedding): Linear(in_features=4, out_features=256, bias=True)\n",
      "  (layers): ModuleList(\n",
      "    (0-2): 3 x Block(\n",
      "      (mixer): Mamba(\n",
      "        (in_proj): Linear(in_features=256, out_features=1024, bias=False)\n",
      "        (conv1d): Conv1d(512, 512, kernel_size=(4,), stride=(1,), padding=(3,), groups=512)\n",
      "        (act): SiLU()\n",
      "        (x_proj): Linear(in_features=512, out_features=48, bias=False)\n",
      "        (dt_proj): Linear(in_features=16, out_features=512, bias=True)\n",
      "        (out_proj): Linear(in_features=512, out_features=256, bias=False)\n",
      "      )\n",
      "      (norm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n",
      "    )\n",
      "  )\n",
      "  (norm_f): LayerNorm((256,), eps=1e-05, elementwise_affine=True)\n",
      ")\n"
     ]
    }
   ],
   "source": [
    "run_name=\"ssm_4t_3_256_lr0.001_wd1e-05_mask0.15_splice_two_none\"\n",
    "checkpoint=\"epoch=83-step=14000.ckpt\"\n",
    "model_repository=\"/scratch/hdd001/home/phil/msk_backup/grid_runs/\"\n",
    "model = load_model(f\"{model_repository}{run_name}\", checkpoint_name=checkpoint)\n",
    "model = model.to(torch.device('cuda'))\n",
    "print(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([1, 4, 495])\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "torch.Size([1, 256])"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "seq = \"\".join([genome.dna(exon) for exon in transcripts[4].exons])\n",
    "one_hot = seq_to_oh(seq)\n",
    "one_hot = one_hot.T\n",
    "torch_one_hot = torch.tensor(one_hot, dtype=torch.float32)\n",
    "torch_one_hot = torch_one_hot.unsqueeze(0)\n",
    "print(torch_one_hot.shape)\n",
    "torch_one_hot = torch_one_hot.to(device='cuda')\n",
    "lengths = torch.tensor([torch_one_hot.shape[2]]).to(device='cuda')\n",
    "model.representation(torch_one_hot, lengths).shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "torch_rna",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}