ansi-code commited on
Commit
eed0c85
·
1 Parent(s): 1c645f9

Upload 4 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ bert_domain_advertising_classifier filter=lfs diff=lfs merge=lfs -text
bert_domain_advertising_classifier ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70dc19f538e361f7f28848b9aea577b20e9cc941e3eaec4841113d9b2f04f129
3
+ size 8187846
bert_domain_advertising_classifier.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9c9c83fc410ef6a07638af1e5fb5183d2686d7ccfe4b89d678ab6a5c8f62ec6
3
+ size 8207749
bert_domain_advertising_classifier.onnx.ipynb ADDED
@@ -0,0 +1,2572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "source": [
6
+ "%pip install onnx"
7
+ ],
8
+ "metadata": {
9
+ "colab": {
10
+ "base_uri": "https://localhost:8080/"
11
+ },
12
+ "id": "yE8Z_9M87Mth",
13
+ "outputId": "ca9c9cdd-54c2-4527-dad9-5947dc8b7345"
14
+ },
15
+ "execution_count": null,
16
+ "outputs": [
17
+ {
18
+ "output_type": "stream",
19
+ "name": "stdout",
20
+ "text": [
21
+ "Requirement already satisfied: onnx in /usr/local/lib/python3.10/dist-packages (1.15.0)\n",
22
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from onnx) (1.23.5)\n",
23
+ "Requirement already satisfied: protobuf>=3.20.2 in /usr/local/lib/python3.10/dist-packages (from onnx) (3.20.3)\n"
24
+ ]
25
+ }
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": null,
31
+ "metadata": {
32
+ "id": "V2O5yNWuifv3"
33
+ },
34
+ "outputs": [],
35
+ "source": [
36
+ "import ast\n",
37
+ "import torch\n",
38
+ "import pandas as pd\n",
39
+ "import torch.nn as nn\n",
40
+ "from tqdm import tqdm\n",
41
+ "from torch.utils.data import DataLoader, TensorDataset\n",
42
+ "from sklearn.model_selection import train_test_split\n",
43
+ "from sklearn.preprocessing import MultiLabelBinarizer\n",
44
+ "from sklearn.metrics import accuracy_score\n",
45
+ "from transformers import BertTokenizer, AdamW, BertForSequenceClassification"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "metadata": {
52
+ "id": "G4PfTgErIXIj"
53
+ },
54
+ "outputs": [],
55
+ "source": [
56
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": null,
62
+ "metadata": {
63
+ "id": "TSKX7sHE6Bnr"
64
+ },
65
+ "outputs": [],
66
+ "source": [
67
+ "df = pd.read_csv('dataset.csv')\n",
68
+ "df['classes'] = df['classes'].apply(ast.literal_eval)"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": null,
74
+ "metadata": {
75
+ "id": "QTwsZltwhPTt"
76
+ },
77
+ "outputs": [],
78
+ "source": [
79
+ "classes_count = [0 for i in range(630)]\n",
80
+ "\n",
81
+ "for classes in df['classes']:\n",
82
+ " for c in classes:\n",
83
+ " classes_count[c] +=1\n",
84
+ "\n",
85
+ "classes_min = min(classes_count)\n",
86
+ "classes_max = max(classes_count)\n",
87
+ "\n",
88
+ "pos_weights = torch.tensor([0.3 + 0.7 * (1 - (c - classes_min) / (classes_max - classes_min)) for c in classes_count]).to(device) # Adjust weights for each class"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": null,
94
+ "metadata": {
95
+ "id": "ZRao8_5mitBa",
96
+ "colab": {
97
+ "base_uri": "https://localhost:8080/",
98
+ "height": 201,
99
+ "referenced_widgets": [
100
+ "e3ebca197a0a426babfb75caf8f81799",
101
+ "548e251c68d044368ecb68898037bb01",
102
+ "7be5e1bf58f34d359bc1726c88c2006f",
103
+ "ab4a6233ff044573958ef204775509c5",
104
+ "887871dfa5414422b63285477cda1930",
105
+ "2af63a8b833a4582babaec7bfc219a36",
106
+ "5b046c94863140dd858051e1b30cf02a",
107
+ "7ae4e4874f704c7d95479a435d3f5a18",
108
+ "78b5111866184eb096cdfb432a4d2c49",
109
+ "2e91d31351fe4c06b0d7827e12686607",
110
+ "44dfbae45a8848a1bc84e12ebd9e93b6",
111
+ "d0afdae8789b42d4985b0c4fda3c2564",
112
+ "7c960dc2e1264d6d813ea2b9c878ffa2",
113
+ "bd09a7a58ff14190b3a683c0e2e4ff79",
114
+ "4b832750eab0451997a0f892d38db423",
115
+ "1bbf5fae9a2c4e32b3d3d162db1c9b5f",
116
+ "7ec362f6554f416384b1a03a3ea41eb9",
117
+ "594493b81e6f45cc94d9d44c2804d042",
118
+ "141ba72718e043edb793f7869b2fedb5",
119
+ "494f55304a184a518e4e35edf39dd7a2",
120
+ "48d903cf22d84ecb8cd5af5874567536",
121
+ "c97fb6b54c474f11ab1fee9aff91cf47",
122
+ "03f2530b9b444d48931daa2ca900bb9e",
123
+ "ded0e4189e594d31b190dbca2efd9cd4",
124
+ "1bed16416cb945828b250748028e4be9",
125
+ "75b649dfd7304bebad995e992d379fa5",
126
+ "a20d444fee7b4919ab47e5bcd69e853a",
127
+ "c330eadc3acc4ddc95f061bf8e841dad",
128
+ "777ec9ccae5240048cdd3212a40ce632",
129
+ "1a61aa0c0b6047f58eff4feb7aa32959",
130
+ "17a3d48a545b4876849fe4ffc764752c",
131
+ "681827839e92433e8dd25faa888c0680",
132
+ "514ab933abbb44eda2cbfd7b6d5ff47a",
133
+ "338ca79c5d294a2e967166437813b668",
134
+ "841711bda59a4625b9a8bae26caed181",
135
+ "3f04bf02bc2149c189bbf00c36ac7107",
136
+ "21e9b97580f440a38a484e136ddadfb2",
137
+ "d1e66db731e949cb8fb16c0bb35729ae",
138
+ "725592c335604e9b95eaaf9852fd588e",
139
+ "8c25c42889db4936af2626284c8c2bfc",
140
+ "d0c60871f88d4405881aabac6e732de9",
141
+ "c7f502323c1e45b696d1c79db8b93ba7",
142
+ "ef643c62650f419ca01d4266049f6c30",
143
+ "e3c9de4c383e489cb1d4e39ab9bd3683"
144
+ ]
145
+ },
146
+ "outputId": "0e9bba12-bd74-4ece-e7d6-aeaae0fa0da9"
147
+ },
148
+ "outputs": [
149
+ {
150
+ "output_type": "display_data",
151
+ "data": {
152
+ "text/plain": [
153
+ "tokenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
154
+ ],
155
+ "application/vnd.jupyter.widget-view+json": {
156
+ "version_major": 2,
157
+ "version_minor": 0,
158
+ "model_id": "e3ebca197a0a426babfb75caf8f81799"
159
+ }
160
+ },
161
+ "metadata": {}
162
+ },
163
+ {
164
+ "output_type": "display_data",
165
+ "data": {
166
+ "text/plain": [
167
+ "vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
168
+ ],
169
+ "application/vnd.jupyter.widget-view+json": {
170
+ "version_major": 2,
171
+ "version_minor": 0,
172
+ "model_id": "d0afdae8789b42d4985b0c4fda3c2564"
173
+ }
174
+ },
175
+ "metadata": {}
176
+ },
177
+ {
178
+ "output_type": "display_data",
179
+ "data": {
180
+ "text/plain": [
181
+ "tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]"
182
+ ],
183
+ "application/vnd.jupyter.widget-view+json": {
184
+ "version_major": 2,
185
+ "version_minor": 0,
186
+ "model_id": "03f2530b9b444d48931daa2ca900bb9e"
187
+ }
188
+ },
189
+ "metadata": {}
190
+ },
191
+ {
192
+ "output_type": "display_data",
193
+ "data": {
194
+ "text/plain": [
195
+ "config.json: 0%| | 0.00/570 [00:00<?, ?B/s]"
196
+ ],
197
+ "application/vnd.jupyter.widget-view+json": {
198
+ "version_major": 2,
199
+ "version_minor": 0,
200
+ "model_id": "338ca79c5d294a2e967166437813b668"
201
+ }
202
+ },
203
+ "metadata": {}
204
+ }
205
+ ],
206
+ "source": [
207
+ "mlb = MultiLabelBinarizer()\n",
208
+ "mlb.fit([range(len(classes_count))])\n",
209
+ "train_df, val_df = train_test_split(df, test_size=0.2, random_state=42)\n",
210
+ "\n",
211
+ "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
212
+ "\n",
213
+ "def tokenize_data(data, max_length=16):\n",
214
+ " input_ids = []\n",
215
+ " attention_masks = []\n",
216
+ " labels = []\n",
217
+ "\n",
218
+ " for _, row in data.iterrows():\n",
219
+ " text = row['domain'].replace('.', ' ')\n",
220
+ " classes = row['classes']\n",
221
+ "\n",
222
+ " encoding = tokenizer.encode_plus(\n",
223
+ " text,\n",
224
+ " max_length=max_length,\n",
225
+ " padding='max_length',\n",
226
+ " truncation=True,\n",
227
+ " return_tensors='pt'\n",
228
+ " )\n",
229
+ "\n",
230
+ " input_ids.append(encoding['input_ids'])\n",
231
+ " attention_masks.append(encoding['attention_mask'])\n",
232
+ " labels.append(torch.tensor(mlb.transform([classes])))\n",
233
+ "\n",
234
+ " input_ids = torch.cat(input_ids, dim=0)\n",
235
+ " attention_masks = torch.cat(attention_masks, dim=0)\n",
236
+ " labels = torch.cat(labels, dim=0)\n",
237
+ "\n",
238
+ " return TensorDataset(input_ids, attention_masks, labels)\n",
239
+ "\n",
240
+ "\n",
241
+ "train_dataset = tokenize_data(train_df)\n",
242
+ "val_dataset = tokenize_data(val_df)\n",
243
+ "\n",
244
+ "train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)\n",
245
+ "val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)"
246
+ ]
247
+ },
248
+ {
249
+ "cell_type": "code",
250
+ "execution_count": null,
251
+ "metadata": {
252
+ "id": "ScZSPDtsFST9"
253
+ },
254
+ "outputs": [],
255
+ "source": [
256
+ "class SmallBERT(nn.Module):\n",
257
+ " def __init__(self, hidden_size=256, num_layers=2, num_attention_heads=4, num_classes=2, vocab_size=30522):\n",
258
+ " super(SmallBERT, self).__init__()\n",
259
+ "\n",
260
+ " self.embedding = nn.Embedding(vocab_size, hidden_size)\n",
261
+ "\n",
262
+ " self.transformer = nn.TransformerEncoder(\n",
263
+ " encoder_layer=nn.TransformerEncoderLayer(\n",
264
+ " d_model=hidden_size,\n",
265
+ " nhead=num_attention_heads,\n",
266
+ " dim_feedforward=hidden_size * 4\n",
267
+ " ),\n",
268
+ " num_layers=num_layers\n",
269
+ " )\n",
270
+ "\n",
271
+ " self.dropout = nn.Dropout(0.1)\n",
272
+ " self.classifier = nn.Linear(hidden_size, num_classes)\n",
273
+ "\n",
274
+ " def forward(self, input_ids, attention_mask):\n",
275
+ " embedded = self.embedding(input_ids)\n",
276
+ " transformer_output = self.transformer(embedded)\n",
277
+ " pooled_output = transformer_output.mean(dim=1)\n",
278
+ " pooled_output = self.dropout(pooled_output)\n",
279
+ " logits = self.classifier(pooled_output)\n",
280
+ "\n",
281
+ " return logits"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "code",
286
+ "execution_count": null,
287
+ "metadata": {
288
+ "colab": {
289
+ "base_uri": "https://localhost:8080/"
290
+ },
291
+ "id": "uRGMQeqxygB-",
292
+ "outputId": "2ff0b6bf-bd9a-4edd-dd3c-eaf4af9ed972"
293
+ },
294
+ "outputs": [
295
+ {
296
+ "output_type": "stream",
297
+ "name": "stderr",
298
+ "text": [
299
+ "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/transformer.py:282: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)\n",
300
+ " warnings.warn(f\"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}\")\n"
301
+ ]
302
+ },
303
+ {
304
+ "output_type": "execute_result",
305
+ "data": {
306
+ "text/plain": [
307
+ "SmallBERT(\n",
308
+ " (embedding): Embedding(30522, 64)\n",
309
+ " (transformer): TransformerEncoder(\n",
310
+ " (layers): ModuleList(\n",
311
+ " (0): TransformerEncoderLayer(\n",
312
+ " (self_attn): MultiheadAttention(\n",
313
+ " (out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)\n",
314
+ " )\n",
315
+ " (linear1): Linear(in_features=64, out_features=256, bias=True)\n",
316
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
317
+ " (linear2): Linear(in_features=256, out_features=64, bias=True)\n",
318
+ " (norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
319
+ " (norm2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
320
+ " (dropout1): Dropout(p=0.1, inplace=False)\n",
321
+ " (dropout2): Dropout(p=0.1, inplace=False)\n",
322
+ " )\n",
323
+ " )\n",
324
+ " )\n",
325
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
326
+ " (classifier): Linear(in_features=64, out_features=630, bias=True)\n",
327
+ ")"
328
+ ]
329
+ },
330
+ "metadata": {},
331
+ "execution_count": 9
332
+ }
333
+ ],
334
+ "source": [
335
+ "model = SmallBERT(hidden_size=64, num_layers=1, num_attention_heads=2, num_classes=len(mlb.classes_), vocab_size=30522)\n",
336
+ "model.to(device)"
337
+ ]
338
+ },
339
+ {
340
+ "cell_type": "code",
341
+ "execution_count": null,
342
+ "metadata": {
343
+ "colab": {
344
+ "base_uri": "https://localhost:8080/"
345
+ },
346
+ "id": "I6SmEEwfyu02",
347
+ "outputId": "ef09ac44-2346-4940-9cb4-a5cbf955f8d9"
348
+ },
349
+ "outputs": [
350
+ {
351
+ "output_type": "stream",
352
+ "name": "stderr",
353
+ "text": [
354
+ "/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
355
+ " warnings.warn(\n",
356
+ "Epoch 1: 100%|██████████| 17333/17333 [01:34<00:00, 183.05it/s]\n"
357
+ ]
358
+ },
359
+ {
360
+ "output_type": "stream",
361
+ "name": "stdout",
362
+ "text": [
363
+ "Training Loss: 0.01455639958662022\n"
364
+ ]
365
+ },
366
+ {
367
+ "output_type": "stream",
368
+ "name": "stderr",
369
+ "text": [
370
+ "Epoch 2: 100%|██████████| 17333/17333 [01:32<00:00, 187.41it/s]\n"
371
+ ]
372
+ },
373
+ {
374
+ "output_type": "stream",
375
+ "name": "stdout",
376
+ "text": [
377
+ "Training Loss: 0.009372596806357445\n"
378
+ ]
379
+ },
380
+ {
381
+ "output_type": "stream",
382
+ "name": "stderr",
383
+ "text": [
384
+ "Epoch 3: 100%|██████████| 17333/17333 [01:33<00:00, 185.43it/s]\n"
385
+ ]
386
+ },
387
+ {
388
+ "output_type": "stream",
389
+ "name": "stdout",
390
+ "text": [
391
+ "Training Loss: 0.00895946430422158\n"
392
+ ]
393
+ },
394
+ {
395
+ "output_type": "stream",
396
+ "name": "stderr",
397
+ "text": [
398
+ "Epoch 4: 100%|██████████| 17333/17333 [01:33<00:00, 184.48it/s]\n"
399
+ ]
400
+ },
401
+ {
402
+ "output_type": "stream",
403
+ "name": "stdout",
404
+ "text": [
405
+ "Training Loss: 0.008654748138614369\n"
406
+ ]
407
+ },
408
+ {
409
+ "output_type": "stream",
410
+ "name": "stderr",
411
+ "text": [
412
+ "Epoch 5: 100%|██████████| 17333/17333 [01:37<00:00, 178.17it/s]\n"
413
+ ]
414
+ },
415
+ {
416
+ "output_type": "stream",
417
+ "name": "stdout",
418
+ "text": [
419
+ "Training Loss: 0.008430107505195222\n"
420
+ ]
421
+ },
422
+ {
423
+ "output_type": "stream",
424
+ "name": "stderr",
425
+ "text": [
426
+ "Epoch 6: 100%|██████████| 17333/17333 [01:35<00:00, 181.19it/s]\n"
427
+ ]
428
+ },
429
+ {
430
+ "output_type": "stream",
431
+ "name": "stdout",
432
+ "text": [
433
+ "Training Loss: 0.00825132777584388\n"
434
+ ]
435
+ },
436
+ {
437
+ "output_type": "stream",
438
+ "name": "stderr",
439
+ "text": [
440
+ "Epoch 7: 100%|██████████| 17333/17333 [01:35<00:00, 181.75it/s]\n"
441
+ ]
442
+ },
443
+ {
444
+ "output_type": "stream",
445
+ "name": "stdout",
446
+ "text": [
447
+ "Training Loss: 0.008098585383865228\n"
448
+ ]
449
+ },
450
+ {
451
+ "output_type": "stream",
452
+ "name": "stderr",
453
+ "text": [
454
+ "Epoch 8: 100%|██████████| 17333/17333 [01:36<00:00, 178.89it/s]\n"
455
+ ]
456
+ },
457
+ {
458
+ "output_type": "stream",
459
+ "name": "stdout",
460
+ "text": [
461
+ "Training Loss: 0.007973489129822018\n"
462
+ ]
463
+ },
464
+ {
465
+ "output_type": "stream",
466
+ "name": "stderr",
467
+ "text": [
468
+ "Epoch 9: 100%|██████████| 17333/17333 [01:34<00:00, 182.66it/s]\n"
469
+ ]
470
+ },
471
+ {
472
+ "output_type": "stream",
473
+ "name": "stdout",
474
+ "text": [
475
+ "Training Loss: 0.007862447003308942\n"
476
+ ]
477
+ },
478
+ {
479
+ "output_type": "stream",
480
+ "name": "stderr",
481
+ "text": [
482
+ "Epoch 10: 100%|██████████| 17333/17333 [01:34<00:00, 184.37it/s]\n"
483
+ ]
484
+ },
485
+ {
486
+ "output_type": "stream",
487
+ "name": "stdout",
488
+ "text": [
489
+ "Training Loss: 0.007767102444360781\n"
490
+ ]
491
+ },
492
+ {
493
+ "output_type": "stream",
494
+ "name": "stderr",
495
+ "text": [
496
+ "Epoch 11: 100%|██████████| 17333/17333 [01:32<00:00, 187.08it/s]\n"
497
+ ]
498
+ },
499
+ {
500
+ "output_type": "stream",
501
+ "name": "stdout",
502
+ "text": [
503
+ "Training Loss: 0.007681683442265059\n"
504
+ ]
505
+ },
506
+ {
507
+ "output_type": "stream",
508
+ "name": "stderr",
509
+ "text": [
510
+ "Epoch 12: 100%|██████████| 17333/17333 [01:34<00:00, 183.56it/s]\n"
511
+ ]
512
+ },
513
+ {
514
+ "output_type": "stream",
515
+ "name": "stdout",
516
+ "text": [
517
+ "Training Loss: 0.0076040456217698555\n"
518
+ ]
519
+ },
520
+ {
521
+ "output_type": "stream",
522
+ "name": "stderr",
523
+ "text": [
524
+ "Epoch 13: 100%|██████████| 17333/17333 [01:33<00:00, 185.58it/s]\n"
525
+ ]
526
+ },
527
+ {
528
+ "output_type": "stream",
529
+ "name": "stdout",
530
+ "text": [
531
+ "Training Loss: 0.007536577820711911\n"
532
+ ]
533
+ },
534
+ {
535
+ "output_type": "stream",
536
+ "name": "stderr",
537
+ "text": [
538
+ "Epoch 14: 100%|██████████| 17333/17333 [01:33<00:00, 185.95it/s]\n"
539
+ ]
540
+ },
541
+ {
542
+ "output_type": "stream",
543
+ "name": "stdout",
544
+ "text": [
545
+ "Training Loss: 0.007473697705334162\n"
546
+ ]
547
+ },
548
+ {
549
+ "output_type": "stream",
550
+ "name": "stderr",
551
+ "text": [
552
+ "Epoch 15: 100%|██████████| 17333/17333 [01:35<00:00, 182.32it/s]\n"
553
+ ]
554
+ },
555
+ {
556
+ "output_type": "stream",
557
+ "name": "stdout",
558
+ "text": [
559
+ "Training Loss: 0.0074216005095400365\n"
560
+ ]
561
+ },
562
+ {
563
+ "output_type": "stream",
564
+ "name": "stderr",
565
+ "text": [
566
+ "Epoch 16: 100%|██████████| 17333/17333 [01:34<00:00, 183.65it/s]\n"
567
+ ]
568
+ },
569
+ {
570
+ "output_type": "stream",
571
+ "name": "stdout",
572
+ "text": [
573
+ "Training Loss: 0.007366839836092643\n"
574
+ ]
575
+ },
576
+ {
577
+ "output_type": "stream",
578
+ "name": "stderr",
579
+ "text": [
580
+ "Epoch 17: 100%|██████████| 17333/17333 [01:35<00:00, 182.22it/s]\n"
581
+ ]
582
+ },
583
+ {
584
+ "output_type": "stream",
585
+ "name": "stdout",
586
+ "text": [
587
+ "Training Loss: 0.007323595992545943\n"
588
+ ]
589
+ },
590
+ {
591
+ "output_type": "stream",
592
+ "name": "stderr",
593
+ "text": [
594
+ "Epoch 18: 100%|██████████| 17333/17333 [01:35<00:00, 182.39it/s]\n"
595
+ ]
596
+ },
597
+ {
598
+ "output_type": "stream",
599
+ "name": "stdout",
600
+ "text": [
601
+ "Training Loss: 0.007281322365534597\n"
602
+ ]
603
+ },
604
+ {
605
+ "output_type": "stream",
606
+ "name": "stderr",
607
+ "text": [
608
+ "Epoch 19: 100%|██████████| 17333/17333 [01:34<00:00, 184.08it/s]\n"
609
+ ]
610
+ },
611
+ {
612
+ "output_type": "stream",
613
+ "name": "stdout",
614
+ "text": [
615
+ "Training Loss: 0.007237244195990475\n"
616
+ ]
617
+ },
618
+ {
619
+ "output_type": "stream",
620
+ "name": "stderr",
621
+ "text": [
622
+ "Epoch 20: 100%|██████████| 17333/17333 [01:32<00:00, 186.76it/s]\n"
623
+ ]
624
+ },
625
+ {
626
+ "output_type": "stream",
627
+ "name": "stdout",
628
+ "text": [
629
+ "Training Loss: 0.007204567027232412\n"
630
+ ]
631
+ },
632
+ {
633
+ "output_type": "stream",
634
+ "name": "stderr",
635
+ "text": [
636
+ "Epoch 21: 100%|██████████| 17333/17333 [01:34<00:00, 182.81it/s]\n"
637
+ ]
638
+ },
639
+ {
640
+ "output_type": "stream",
641
+ "name": "stdout",
642
+ "text": [
643
+ "Training Loss: 0.007169707122033225\n"
644
+ ]
645
+ },
646
+ {
647
+ "output_type": "stream",
648
+ "name": "stderr",
649
+ "text": [
650
+ "Epoch 22: 100%|██████████| 17333/17333 [01:34<00:00, 183.90it/s]\n"
651
+ ]
652
+ },
653
+ {
654
+ "output_type": "stream",
655
+ "name": "stdout",
656
+ "text": [
657
+ "Training Loss: 0.0071396396113856736\n"
658
+ ]
659
+ },
660
+ {
661
+ "output_type": "stream",
662
+ "name": "stderr",
663
+ "text": [
664
+ "Epoch 23: 100%|██████████| 17333/17333 [01:34<00:00, 184.27it/s]\n"
665
+ ]
666
+ },
667
+ {
668
+ "output_type": "stream",
669
+ "name": "stdout",
670
+ "text": [
671
+ "Training Loss: 0.0071061778510986525\n"
672
+ ]
673
+ },
674
+ {
675
+ "output_type": "stream",
676
+ "name": "stderr",
677
+ "text": [
678
+ "Epoch 24: 100%|██████████| 17333/17333 [01:32<00:00, 187.58it/s]\n"
679
+ ]
680
+ },
681
+ {
682
+ "output_type": "stream",
683
+ "name": "stdout",
684
+ "text": [
685
+ "Training Loss: 0.007079116968562793\n"
686
+ ]
687
+ },
688
+ {
689
+ "output_type": "stream",
690
+ "name": "stderr",
691
+ "text": [
692
+ "Epoch 25: 100%|██████████| 17333/17333 [01:35<00:00, 182.40it/s]\n"
693
+ ]
694
+ },
695
+ {
696
+ "output_type": "stream",
697
+ "name": "stdout",
698
+ "text": [
699
+ "Training Loss: 0.007053613749052303\n"
700
+ ]
701
+ },
702
+ {
703
+ "output_type": "stream",
704
+ "name": "stderr",
705
+ "text": [
706
+ "Epoch 26: 100%|██████████| 17333/17333 [01:33<00:00, 184.62it/s]\n"
707
+ ]
708
+ },
709
+ {
710
+ "output_type": "stream",
711
+ "name": "stdout",
712
+ "text": [
713
+ "Training Loss: 0.007027668537672933\n"
714
+ ]
715
+ },
716
+ {
717
+ "output_type": "stream",
718
+ "name": "stderr",
719
+ "text": [
720
+ "Epoch 27: 100%|██████████| 17333/17333 [01:32<00:00, 187.06it/s]\n"
721
+ ]
722
+ },
723
+ {
724
+ "output_type": "stream",
725
+ "name": "stdout",
726
+ "text": [
727
+ "Training Loss: 0.007002266663781792\n"
728
+ ]
729
+ },
730
+ {
731
+ "output_type": "stream",
732
+ "name": "stderr",
733
+ "text": [
734
+ "Epoch 28: 100%|██████████| 17333/17333 [01:33<00:00, 185.74it/s]\n"
735
+ ]
736
+ },
737
+ {
738
+ "output_type": "stream",
739
+ "name": "stdout",
740
+ "text": [
741
+ "Training Loss: 0.006983264061160072\n"
742
+ ]
743
+ },
744
+ {
745
+ "output_type": "stream",
746
+ "name": "stderr",
747
+ "text": [
748
+ "Epoch 29: 100%|██████████| 17333/17333 [01:32<00:00, 186.62it/s]\n"
749
+ ]
750
+ },
751
+ {
752
+ "output_type": "stream",
753
+ "name": "stdout",
754
+ "text": [
755
+ "Training Loss: 0.006960326002187834\n"
756
+ ]
757
+ },
758
+ {
759
+ "output_type": "stream",
760
+ "name": "stderr",
761
+ "text": [
762
+ "Epoch 30: 100%|██████████| 17333/17333 [01:33<00:00, 185.09it/s]\n"
763
+ ]
764
+ },
765
+ {
766
+ "output_type": "stream",
767
+ "name": "stdout",
768
+ "text": [
769
+ "Training Loss: 0.006937417333392953\n"
770
+ ]
771
+ },
772
+ {
773
+ "output_type": "stream",
774
+ "name": "stderr",
775
+ "text": [
776
+ "Epoch 31: 100%|██████████| 17333/17333 [01:34<00:00, 183.75it/s]\n"
777
+ ]
778
+ },
779
+ {
780
+ "output_type": "stream",
781
+ "name": "stdout",
782
+ "text": [
783
+ "Training Loss: 0.006922033323461952\n"
784
+ ]
785
+ },
786
+ {
787
+ "output_type": "stream",
788
+ "name": "stderr",
789
+ "text": [
790
+ "Epoch 32: 100%|██████████| 17333/17333 [01:33<00:00, 184.46it/s]\n"
791
+ ]
792
+ },
793
+ {
794
+ "output_type": "stream",
795
+ "name": "stdout",
796
+ "text": [
797
+ "Training Loss: 0.006898388598138539\n"
798
+ ]
799
+ },
800
+ {
801
+ "output_type": "stream",
802
+ "name": "stderr",
803
+ "text": [
804
+ "Epoch 33: 100%|██████████| 17333/17333 [01:33<00:00, 185.13it/s]\n"
805
+ ]
806
+ },
807
+ {
808
+ "output_type": "stream",
809
+ "name": "stdout",
810
+ "text": [
811
+ "Training Loss: 0.006879616245666734\n"
812
+ ]
813
+ },
814
+ {
815
+ "output_type": "stream",
816
+ "name": "stderr",
817
+ "text": [
818
+ "Epoch 34: 100%|██████████| 17333/17333 [01:33<00:00, 184.60it/s]\n"
819
+ ]
820
+ },
821
+ {
822
+ "output_type": "stream",
823
+ "name": "stdout",
824
+ "text": [
825
+ "Training Loss: 0.006862940901992164\n"
826
+ ]
827
+ },
828
+ {
829
+ "output_type": "stream",
830
+ "name": "stderr",
831
+ "text": [
832
+ "Epoch 35: 100%|██████████| 17333/17333 [01:42<00:00, 169.91it/s]\n"
833
+ ]
834
+ },
835
+ {
836
+ "output_type": "stream",
837
+ "name": "stdout",
838
+ "text": [
839
+ "Training Loss: 0.006847698244776712\n"
840
+ ]
841
+ },
842
+ {
843
+ "output_type": "stream",
844
+ "name": "stderr",
845
+ "text": [
846
+ "Epoch 36: 100%|██████████| 17333/17333 [01:34<00:00, 183.32it/s]\n"
847
+ ]
848
+ },
849
+ {
850
+ "output_type": "stream",
851
+ "name": "stdout",
852
+ "text": [
853
+ "Training Loss: 0.006830427775150129\n"
854
+ ]
855
+ },
856
+ {
857
+ "output_type": "stream",
858
+ "name": "stderr",
859
+ "text": [
860
+ "Epoch 37: 100%|██████████| 17333/17333 [01:34<00:00, 183.19it/s]\n"
861
+ ]
862
+ },
863
+ {
864
+ "output_type": "stream",
865
+ "name": "stdout",
866
+ "text": [
867
+ "Training Loss: 0.006812137309707921\n"
868
+ ]
869
+ },
870
+ {
871
+ "output_type": "stream",
872
+ "name": "stderr",
873
+ "text": [
874
+ "Epoch 38: 100%|██████████| 17333/17333 [01:33<00:00, 184.78it/s]\n"
875
+ ]
876
+ },
877
+ {
878
+ "output_type": "stream",
879
+ "name": "stdout",
880
+ "text": [
881
+ "Training Loss: 0.0067945668246664325\n"
882
+ ]
883
+ },
884
+ {
885
+ "output_type": "stream",
886
+ "name": "stderr",
887
+ "text": [
888
+ "Epoch 39: 100%|██████████| 17333/17333 [01:35<00:00, 181.25it/s]\n"
889
+ ]
890
+ },
891
+ {
892
+ "output_type": "stream",
893
+ "name": "stdout",
894
+ "text": [
895
+ "Training Loss: 0.0067820949417340725\n"
896
+ ]
897
+ },
898
+ {
899
+ "output_type": "stream",
900
+ "name": "stderr",
901
+ "text": [
902
+ "Epoch 40: 100%|██████████| 17333/17333 [01:35<00:00, 182.22it/s]\n"
903
+ ]
904
+ },
905
+ {
906
+ "output_type": "stream",
907
+ "name": "stdout",
908
+ "text": [
909
+ "Training Loss: 0.006767237709435089\n"
910
+ ]
911
+ },
912
+ {
913
+ "output_type": "stream",
914
+ "name": "stderr",
915
+ "text": [
916
+ "Epoch 41: 100%|██████████| 17333/17333 [01:33<00:00, 186.12it/s]\n"
917
+ ]
918
+ },
919
+ {
920
+ "output_type": "stream",
921
+ "name": "stdout",
922
+ "text": [
923
+ "Training Loss: 0.006754826359595461\n"
924
+ ]
925
+ },
926
+ {
927
+ "output_type": "stream",
928
+ "name": "stderr",
929
+ "text": [
930
+ "Epoch 42: 100%|██████████| 17333/17333 [01:34<00:00, 184.04it/s]\n"
931
+ ]
932
+ },
933
+ {
934
+ "output_type": "stream",
935
+ "name": "stdout",
936
+ "text": [
937
+ "Training Loss: 0.006737771247406829\n"
938
+ ]
939
+ },
940
+ {
941
+ "output_type": "stream",
942
+ "name": "stderr",
943
+ "text": [
944
+ "Epoch 43: 100%|██████████| 17333/17333 [01:33<00:00, 185.51it/s]\n"
945
+ ]
946
+ },
947
+ {
948
+ "output_type": "stream",
949
+ "name": "stdout",
950
+ "text": [
951
+ "Training Loss: 0.006729339890418221\n"
952
+ ]
953
+ },
954
+ {
955
+ "output_type": "stream",
956
+ "name": "stderr",
957
+ "text": [
958
+ "Epoch 44: 100%|██████████| 17333/17333 [01:34<00:00, 183.86it/s]\n"
959
+ ]
960
+ },
961
+ {
962
+ "output_type": "stream",
963
+ "name": "stdout",
964
+ "text": [
965
+ "Training Loss: 0.006713867076464513\n"
966
+ ]
967
+ },
968
+ {
969
+ "output_type": "stream",
970
+ "name": "stderr",
971
+ "text": [
972
+ "Epoch 45: 100%|██████████| 17333/17333 [01:36<00:00, 180.05it/s]\n"
973
+ ]
974
+ },
975
+ {
976
+ "output_type": "stream",
977
+ "name": "stdout",
978
+ "text": [
979
+ "Training Loss: 0.006700394152881958\n"
980
+ ]
981
+ },
982
+ {
983
+ "output_type": "stream",
984
+ "name": "stderr",
985
+ "text": [
986
+ "Epoch 46: 100%|██████████| 17333/17333 [01:34<00:00, 183.63it/s]\n"
987
+ ]
988
+ },
989
+ {
990
+ "output_type": "stream",
991
+ "name": "stdout",
992
+ "text": [
993
+ "Training Loss: 0.006688476914265044\n"
994
+ ]
995
+ },
996
+ {
997
+ "output_type": "stream",
998
+ "name": "stderr",
999
+ "text": [
1000
+ "Epoch 47: 100%|██████████| 17333/17333 [01:33<00:00, 185.67it/s]\n"
1001
+ ]
1002
+ },
1003
+ {
1004
+ "output_type": "stream",
1005
+ "name": "stdout",
1006
+ "text": [
1007
+ "Training Loss: 0.006676017345109116\n"
1008
+ ]
1009
+ },
1010
+ {
1011
+ "output_type": "stream",
1012
+ "name": "stderr",
1013
+ "text": [
1014
+ "Epoch 48: 100%|██████████| 17333/17333 [01:33<00:00, 184.72it/s]\n"
1015
+ ]
1016
+ },
1017
+ {
1018
+ "output_type": "stream",
1019
+ "name": "stdout",
1020
+ "text": [
1021
+ "Training Loss: 0.006663939434730227\n"
1022
+ ]
1023
+ },
1024
+ {
1025
+ "output_type": "stream",
1026
+ "name": "stderr",
1027
+ "text": [
1028
+ "Epoch 49: 100%|██████████| 17333/17333 [01:33<00:00, 185.32it/s]\n"
1029
+ ]
1030
+ },
1031
+ {
1032
+ "output_type": "stream",
1033
+ "name": "stdout",
1034
+ "text": [
1035
+ "Training Loss: 0.006649965298220924\n"
1036
+ ]
1037
+ },
1038
+ {
1039
+ "output_type": "stream",
1040
+ "name": "stderr",
1041
+ "text": [
1042
+ "Epoch 50: 100%|██████████| 17333/17333 [01:33<00:00, 185.48it/s]"
1043
+ ]
1044
+ },
1045
+ {
1046
+ "output_type": "stream",
1047
+ "name": "stdout",
1048
+ "text": [
1049
+ "Training Loss: 0.006640829532034061\n"
1050
+ ]
1051
+ },
1052
+ {
1053
+ "output_type": "stream",
1054
+ "name": "stderr",
1055
+ "text": [
1056
+ "\n"
1057
+ ]
1058
+ }
1059
+ ],
1060
+ "source": [
1061
+ "model.train()\n",
1062
+ "\n",
1063
+ "optimizer = AdamW(model.parameters(), lr=2e-4)\n",
1064
+ "criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weights, reduction='mean')\n",
1065
+ "\n",
1066
+ "epochs = 50\n",
1067
+ "for epoch in range(epochs):\n",
1068
+ " total_loss = 0\n",
1069
+ "\n",
1070
+ " for batch in tqdm(train_dataloader, desc=f'Epoch {epoch + 1}'):\n",
1071
+ " input_ids = batch[0].to(device)\n",
1072
+ " attention_mask = batch[1].to(device)\n",
1073
+ " labels = batch[2].to(device, dtype=torch.float)\n",
1074
+ "\n",
1075
+ " optimizer.zero_grad()\n",
1076
+ " logits = model(input_ids=input_ids, attention_mask=attention_mask)\n",
1077
+ "\n",
1078
+ " loss = criterion(logits, labels)\n",
1079
+ " total_loss += loss.item()\n",
1080
+ "\n",
1081
+ " loss.backward()\n",
1082
+ " optimizer.step()\n",
1083
+ "\n",
1084
+ " average_loss = total_loss / len(train_dataloader)\n",
1085
+ " print(f'Training Loss: {average_loss}')"
1086
+ ]
1087
+ },
1088
+ {
1089
+ "cell_type": "code",
1090
+ "execution_count": null,
1091
+ "metadata": {
1092
+ "id": "GO0fi0qQ7oKb",
1093
+ "colab": {
1094
+ "base_uri": "https://localhost:8080/"
1095
+ },
1096
+ "outputId": "2863272e-3956-4e9a-b7ba-fd8b850ec406"
1097
+ },
1098
+ "outputs": [
1099
+ {
1100
+ "output_type": "stream",
1101
+ "name": "stderr",
1102
+ "text": [
1103
+ "Validation: 100%|██████████| 4334/4334 [00:07<00:00, 563.03it/s]\n",
1104
+ "<ipython-input-11-49aedd21c825>:16: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:261.)\n",
1105
+ " predicted_labels = mlb.inverse_transform(torch.tensor(predicted_logits))\n"
1106
+ ]
1107
+ },
1108
+ {
1109
+ "output_type": "stream",
1110
+ "name": "stdout",
1111
+ "text": [
1112
+ "Predicted labels [(), (), (332,), (183, 194, 215), (215,), (23,), (534,), (), (140,), (183,), (229,), (239,), (), (227, 542), (536,), (140,), (1,), (140, 299), (), (250,), (173,), (227, 542), (239,), (363, 365), (), (215,), (243,), (1, 183, 363), (332, 340), (215,), (289,), (), (96, 289, 572), (), (), (), (), (160,), (215,), (1, 104, 183), (140, 227, 439), (), (289,), (408, 412, 601), (), (140, 215, 250, 528), (332,), (), (183,), (289,), (183, 194), (183,), (), (48, 363), (), (215,), (104,), (), (239, 423), (215, 250), (), (183,), (1,), (444,), (215,), (243, 245), (299, 325, 363, 364, 365), (104, 533), (239,), (534,), (183, 533), (400,), (332,), (), (250,), (215,), (103, 215, 439), (), (), (1, 183, 186, 215), (), (), (103, 126, 289), (363,), (172,), (215,), (140, 215, 439), (183,), (), (23,), (351,), (227, 229, 542), (1, 23), (), (), (), (183,), (215,), (183, 351), (325,)]\n",
1113
+ "True inputs ['usw1.green.ops.kargo.com', '6002359.global.siteimproveanalytics.io', 'didiglobal.com.dob.sibl.support-intelligence.net', 'ns500248.ns500202.ns500248.ns500242.ns500197.ns500219.sweetchicksclub.com', 'ms.email.nextdoor.com', 'd.hello.plowandhearth.com', 'p45-contentws.icloud.com', 'pakasak.com', 'vm3-proxy-hisgeneral-scus-sat02p-6.connector.his.msappproxy.net', 'gahu.hit.gemius.pl', 'ep.wakehealth.edu', 'fi-prj-poc-slim.frontsrv.com', 'v3.pebblepad.co.uk', 'osceolak12.schoology.com', 'mydnspt.net', 'default-download.splashtop.com', 'flow.performgroup.io', 'instagram.feoh11-1.fna.fbcdn.net', 'arin.authdns.ripe.net', 'lee.ns.cloudflare.com', 'goodhoodstore.com', 'gw01mem01-eastus.classroom.cloud', 'www.sos.state.mn.us', 'security.netflix.net', 'prod.lb.mlsmatrix.com', 'apps.paris.fr', 'rc.samsungweather.com', 'pull-flv-f6.douyincdn.com.hdlvcloud.ks-cdn.com', 'visitutah.com', 'ogs.google.co.kr', 'daraz-sg.alibaba.com.gds.alibabadns.com', 'stor.g2.ph.dell.com', 'zalando.es', 'perfumist.net', 'lifesparking.com', 'signon.hoovers.dnb.com', 'appdl2drcndbankcdn.cache.qcloudcdn.qq.com', 'api.my.healthequity.com', 'db3pcor006-meta.fe.1drv.com', 'cdn.pubble.io', 'jminsure-my.sharepoint.com', 'aws.upstart.com', 'shop.rewe-static.de', 'anonymous.print.avery.com', 'mygts.dhl.com', 'app.chat.global.xiaomi.net', 'citifxvelocity.com', 'core.gss-service.com', 'kdev.msap.io', 'i-subscriptions.thx.lazparking.com', 'ns500245.ns500249.ns500197.hostmaster.sweetxladies.com', 's7.tengu0.xyz', 'link.entrata.com', 'r5.sn-q4flrnsl.c.2mdn.net', 'static.one.network', 'expurgate.de', 'a2467.casalemedia.com', 'squadup.com', 'licensemanager.kaspersky-labs.com', 'doc-0k-7c-docstext.googleusercontent.com', 'perficient.com', 'r4---sn-vgqsrnzz.gvt1.com', 'blockworks-com.gallerycdn.vsassets.io', 'prod-s6-piv.nubank.com.br', 'mailchi.mp.dob.sibl.support-intelligence.net', 'www.steelexpress.co.uk', 'arlostreaming19261-z2-prod.ar.arlo.com', 'ic3-calling-enterpriseproxy.brazilsouth-prod.cosmic.office.net', 'eservices.dor.nc.gov', 'nevacloud.io', 'fceb4-1.fna.fbcdn.net', 'api.cosmopolitan.com.hk', 'map3.viamichelin.com', 'api.foreflight.com', 'o1276079.ingest.sentry.io', 'up.cm.ksmobile.com', 'triconenergy.sharepoint.com', 'mb.cdn.srv-hub.org', 'serv.ad-adapex.io', 'cname.mail.cname.cname.mail.cname.cname.cname.cname.cname.cdn.wan02.com', 'ssb-eu-secure-6.smartadserver.com', 'cap.co.uk', 'ppc-oauth.wac.trafficmanager.net.wac-0003.wac-dc-msedge.net.wac-0003.wac-msedge.net', 'nvidia.tt.omtrdc.net', 'euc.vision.meraki.com', 'ginkgobioworks.zoom.us', 'capanoinc-my.sharepoint.com', 'r2---sn-vgqskned.gvt1.com', 'beplb01.portal.hewitt.com', 'external-media.grailed.com', 'api-senso-cloud-anbaathcgfgmhqhw.z01.azurefd.net', 'classroom.emeritus.org', 'assets.omny.fm', 'r5---sn-nx5s7nel.c.2mdn.net', 'api.kfdealeraccess.com', 'puntown.com', 'st-v3-univ-srs-linux-3040.api.splashtop.com', 'planetoftheapps.com', 'ekbhgdvznq.dbysdbuylr.net', 'fcs.myforcura.com']\n",
1114
+ "True labels [[238], [183, 164], [332], [215, 183], [215], [351], [1], [1], [140], [578], [229], [363, 351, 365], [250, 439], [227, 542], [250], [1, 363], [103], [299], [140], [137, 534], [298], [227], [215, 140], [423], [570], [215], [243], [1, 183, 186], [332], [215], [1, 289], [103], [289, 572, 96], [94], [250], [183, 194], [103], [158, 160], [215], [1], [140, 227, 439], [103, 533], [289], [601], [103], [215], [310], [224, 439], [215, 140], [100], [1, 183, 194], [243], [1], [1, 363], [533], [243, 245], [245], [1, 183], [423], [250], [436, 439], [183], [263], [444], [1], [103, 164], [363, 325, 364], [104, 533], [239], [1, 183, 250], [183, 533], [254, 400], [332], [1], [1], [126, 215, 243, 183], [439], [250], [140, 227], [215, 183, 186], [183], [1], [215], [140], [172, 414], [215, 140], [439], [183], [151], [23], [243], [227, 542], [23], [1], [436], [1], [140, 363], [215, 250], [243], [243, 299, 325]]\n",
1115
+ "Validation Accuracy: 0.18336410315582993\n"
1116
+ ]
1117
+ }
1118
+ ],
1119
+ "source": [
1120
+ "model.eval()\n",
1121
+ "\n",
1122
+ "predicted_logits = []\n",
1123
+ "with torch.no_grad():\n",
1124
+ " for batch in tqdm(val_dataloader, desc='Validation'):\n",
1125
+ " input_ids = batch[0].to(device)\n",
1126
+ " attention_mask = batch[1].to(device)\n",
1127
+ " labels = batch[2].to(device, dtype=torch.float)\n",
1128
+ "\n",
1129
+ " logits = model(input_ids=input_ids, attention_mask=attention_mask)\n",
1130
+ " probabilities = torch.sigmoid(logits)\n",
1131
+ "\n",
1132
+ " preds = (probabilities > 0.2).cpu().numpy().astype(int)\n",
1133
+ " predicted_logits.extend(preds)\n",
1134
+ "\n",
1135
+ "predicted_labels = mlb.inverse_transform(torch.tensor(predicted_logits))\n",
1136
+ "print('Predicted labels', predicted_labels[1000:1100])\n",
1137
+ "\n",
1138
+ "true_inputs = val_df['domain'].tolist()\n",
1139
+ "print('True inputs', true_inputs[1000:1100])\n",
1140
+ "\n",
1141
+ "true_labels = val_df['classes'].tolist()\n",
1142
+ "print('True labels', true_labels[1000:1100])\n",
1143
+ "\n",
1144
+ "true_logits = mlb.transform(true_labels)\n",
1145
+ "accuracy = accuracy_score(true_logits, predicted_logits)\n",
1146
+ "print(f'Validation Accuracy: {accuracy}')"
1147
+ ]
1148
+ },
1149
+ {
1150
+ "cell_type": "code",
1151
+ "source": [
1152
+ "torch.save(model, \"bert_domain_classifier\")\n",
1153
+ "torch.save(model.state_dict(), \"bert_domain_classifier.pth\")"
1154
+ ],
1155
+ "metadata": {
1156
+ "id": "jSo-SvyK8Nan"
1157
+ },
1158
+ "execution_count": null,
1159
+ "outputs": []
1160
+ },
1161
+ {
1162
+ "cell_type": "code",
1163
+ "source": [
1164
+ "dummy_input_ids = torch.zeros((1, 16), dtype=torch.long).to(device)\n",
1165
+ "dummy_attention_mask = torch.zeros((1, 16), dtype=torch.long).to(device)\n",
1166
+ "input_names = ['input_ids', 'attention_mask']\n",
1167
+ "output_names = ['logits']\n",
1168
+ "dynamic_axes = {'input_ids': {0: 'batch_size'}, 'attention_mask': {0: 'batch_size'},\n",
1169
+ " 'logits': {0: 'batch_size'}}\n",
1170
+ "\n",
1171
+ "torch.onnx.export(model, (dummy_input_ids, dummy_attention_mask),\n",
1172
+ " \"bert_domain_classifier.onnx\", opset_version=14,\n",
1173
+ " input_names=input_names,\n",
1174
+ " output_names=output_names,\n",
1175
+ " dynamic_axes=dynamic_axes)"
1176
+ ],
1177
+ "metadata": {
1178
+ "id": "pqanQz3i8DBx"
1179
+ },
1180
+ "execution_count": null,
1181
+ "outputs": []
1182
+ }
1183
+ ],
1184
+ "metadata": {
1185
+ "accelerator": "GPU",
1186
+ "colab": {
1187
+ "provenance": [],
1188
+ "gpuType": "V100"
1189
+ },
1190
+ "kernelspec": {
1191
+ "display_name": "Python 3",
1192
+ "name": "python3"
1193
+ },
1194
+ "language_info": {
1195
+ "name": "python"
1196
+ },
1197
+ "widgets": {
1198
+ "application/vnd.jupyter.widget-state+json": {
1199
+ "e3ebca197a0a426babfb75caf8f81799": {
1200
+ "model_module": "@jupyter-widgets/controls",
1201
+ "model_name": "HBoxModel",
1202
+ "model_module_version": "1.5.0",
1203
+ "state": {
1204
+ "_dom_classes": [],
1205
+ "_model_module": "@jupyter-widgets/controls",
1206
+ "_model_module_version": "1.5.0",
1207
+ "_model_name": "HBoxModel",
1208
+ "_view_count": null,
1209
+ "_view_module": "@jupyter-widgets/controls",
1210
+ "_view_module_version": "1.5.0",
1211
+ "_view_name": "HBoxView",
1212
+ "box_style": "",
1213
+ "children": [
1214
+ "IPY_MODEL_548e251c68d044368ecb68898037bb01",
1215
+ "IPY_MODEL_7be5e1bf58f34d359bc1726c88c2006f",
1216
+ "IPY_MODEL_ab4a6233ff044573958ef204775509c5"
1217
+ ],
1218
+ "layout": "IPY_MODEL_887871dfa5414422b63285477cda1930"
1219
+ }
1220
+ },
1221
+ "548e251c68d044368ecb68898037bb01": {
1222
+ "model_module": "@jupyter-widgets/controls",
1223
+ "model_name": "HTMLModel",
1224
+ "model_module_version": "1.5.0",
1225
+ "state": {
1226
+ "_dom_classes": [],
1227
+ "_model_module": "@jupyter-widgets/controls",
1228
+ "_model_module_version": "1.5.0",
1229
+ "_model_name": "HTMLModel",
1230
+ "_view_count": null,
1231
+ "_view_module": "@jupyter-widgets/controls",
1232
+ "_view_module_version": "1.5.0",
1233
+ "_view_name": "HTMLView",
1234
+ "description": "",
1235
+ "description_tooltip": null,
1236
+ "layout": "IPY_MODEL_2af63a8b833a4582babaec7bfc219a36",
1237
+ "placeholder": "​",
1238
+ "style": "IPY_MODEL_5b046c94863140dd858051e1b30cf02a",
1239
+ "value": "tokenizer_config.json: 100%"
1240
+ }
1241
+ },
1242
+ "7be5e1bf58f34d359bc1726c88c2006f": {
1243
+ "model_module": "@jupyter-widgets/controls",
1244
+ "model_name": "FloatProgressModel",
1245
+ "model_module_version": "1.5.0",
1246
+ "state": {
1247
+ "_dom_classes": [],
1248
+ "_model_module": "@jupyter-widgets/controls",
1249
+ "_model_module_version": "1.5.0",
1250
+ "_model_name": "FloatProgressModel",
1251
+ "_view_count": null,
1252
+ "_view_module": "@jupyter-widgets/controls",
1253
+ "_view_module_version": "1.5.0",
1254
+ "_view_name": "ProgressView",
1255
+ "bar_style": "success",
1256
+ "description": "",
1257
+ "description_tooltip": null,
1258
+ "layout": "IPY_MODEL_7ae4e4874f704c7d95479a435d3f5a18",
1259
+ "max": 28,
1260
+ "min": 0,
1261
+ "orientation": "horizontal",
1262
+ "style": "IPY_MODEL_78b5111866184eb096cdfb432a4d2c49",
1263
+ "value": 28
1264
+ }
1265
+ },
1266
+ "ab4a6233ff044573958ef204775509c5": {
1267
+ "model_module": "@jupyter-widgets/controls",
1268
+ "model_name": "HTMLModel",
1269
+ "model_module_version": "1.5.0",
1270
+ "state": {
1271
+ "_dom_classes": [],
1272
+ "_model_module": "@jupyter-widgets/controls",
1273
+ "_model_module_version": "1.5.0",
1274
+ "_model_name": "HTMLModel",
1275
+ "_view_count": null,
1276
+ "_view_module": "@jupyter-widgets/controls",
1277
+ "_view_module_version": "1.5.0",
1278
+ "_view_name": "HTMLView",
1279
+ "description": "",
1280
+ "description_tooltip": null,
1281
+ "layout": "IPY_MODEL_2e91d31351fe4c06b0d7827e12686607",
1282
+ "placeholder": "​",
1283
+ "style": "IPY_MODEL_44dfbae45a8848a1bc84e12ebd9e93b6",
1284
+ "value": " 28.0/28.0 [00:00&lt;00:00, 1.54kB/s]"
1285
+ }
1286
+ },
1287
+ "887871dfa5414422b63285477cda1930": {
1288
+ "model_module": "@jupyter-widgets/base",
1289
+ "model_name": "LayoutModel",
1290
+ "model_module_version": "1.2.0",
1291
+ "state": {
1292
+ "_model_module": "@jupyter-widgets/base",
1293
+ "_model_module_version": "1.2.0",
1294
+ "_model_name": "LayoutModel",
1295
+ "_view_count": null,
1296
+ "_view_module": "@jupyter-widgets/base",
1297
+ "_view_module_version": "1.2.0",
1298
+ "_view_name": "LayoutView",
1299
+ "align_content": null,
1300
+ "align_items": null,
1301
+ "align_self": null,
1302
+ "border": null,
1303
+ "bottom": null,
1304
+ "display": null,
1305
+ "flex": null,
1306
+ "flex_flow": null,
1307
+ "grid_area": null,
1308
+ "grid_auto_columns": null,
1309
+ "grid_auto_flow": null,
1310
+ "grid_auto_rows": null,
1311
+ "grid_column": null,
1312
+ "grid_gap": null,
1313
+ "grid_row": null,
1314
+ "grid_template_areas": null,
1315
+ "grid_template_columns": null,
1316
+ "grid_template_rows": null,
1317
+ "height": null,
1318
+ "justify_content": null,
1319
+ "justify_items": null,
1320
+ "left": null,
1321
+ "margin": null,
1322
+ "max_height": null,
1323
+ "max_width": null,
1324
+ "min_height": null,
1325
+ "min_width": null,
1326
+ "object_fit": null,
1327
+ "object_position": null,
1328
+ "order": null,
1329
+ "overflow": null,
1330
+ "overflow_x": null,
1331
+ "overflow_y": null,
1332
+ "padding": null,
1333
+ "right": null,
1334
+ "top": null,
1335
+ "visibility": null,
1336
+ "width": null
1337
+ }
1338
+ },
1339
+ "2af63a8b833a4582babaec7bfc219a36": {
1340
+ "model_module": "@jupyter-widgets/base",
1341
+ "model_name": "LayoutModel",
1342
+ "model_module_version": "1.2.0",
1343
+ "state": {
1344
+ "_model_module": "@jupyter-widgets/base",
1345
+ "_model_module_version": "1.2.0",
1346
+ "_model_name": "LayoutModel",
1347
+ "_view_count": null,
1348
+ "_view_module": "@jupyter-widgets/base",
1349
+ "_view_module_version": "1.2.0",
1350
+ "_view_name": "LayoutView",
1351
+ "align_content": null,
1352
+ "align_items": null,
1353
+ "align_self": null,
1354
+ "border": null,
1355
+ "bottom": null,
1356
+ "display": null,
1357
+ "flex": null,
1358
+ "flex_flow": null,
1359
+ "grid_area": null,
1360
+ "grid_auto_columns": null,
1361
+ "grid_auto_flow": null,
1362
+ "grid_auto_rows": null,
1363
+ "grid_column": null,
1364
+ "grid_gap": null,
1365
+ "grid_row": null,
1366
+ "grid_template_areas": null,
1367
+ "grid_template_columns": null,
1368
+ "grid_template_rows": null,
1369
+ "height": null,
1370
+ "justify_content": null,
1371
+ "justify_items": null,
1372
+ "left": null,
1373
+ "margin": null,
1374
+ "max_height": null,
1375
+ "max_width": null,
1376
+ "min_height": null,
1377
+ "min_width": null,
1378
+ "object_fit": null,
1379
+ "object_position": null,
1380
+ "order": null,
1381
+ "overflow": null,
1382
+ "overflow_x": null,
1383
+ "overflow_y": null,
1384
+ "padding": null,
1385
+ "right": null,
1386
+ "top": null,
1387
+ "visibility": null,
1388
+ "width": null
1389
+ }
1390
+ },
1391
+ "5b046c94863140dd858051e1b30cf02a": {
1392
+ "model_module": "@jupyter-widgets/controls",
1393
+ "model_name": "DescriptionStyleModel",
1394
+ "model_module_version": "1.5.0",
1395
+ "state": {
1396
+ "_model_module": "@jupyter-widgets/controls",
1397
+ "_model_module_version": "1.5.0",
1398
+ "_model_name": "DescriptionStyleModel",
1399
+ "_view_count": null,
1400
+ "_view_module": "@jupyter-widgets/base",
1401
+ "_view_module_version": "1.2.0",
1402
+ "_view_name": "StyleView",
1403
+ "description_width": ""
1404
+ }
1405
+ },
1406
+ "7ae4e4874f704c7d95479a435d3f5a18": {
1407
+ "model_module": "@jupyter-widgets/base",
1408
+ "model_name": "LayoutModel",
1409
+ "model_module_version": "1.2.0",
1410
+ "state": {
1411
+ "_model_module": "@jupyter-widgets/base",
1412
+ "_model_module_version": "1.2.0",
1413
+ "_model_name": "LayoutModel",
1414
+ "_view_count": null,
1415
+ "_view_module": "@jupyter-widgets/base",
1416
+ "_view_module_version": "1.2.0",
1417
+ "_view_name": "LayoutView",
1418
+ "align_content": null,
1419
+ "align_items": null,
1420
+ "align_self": null,
1421
+ "border": null,
1422
+ "bottom": null,
1423
+ "display": null,
1424
+ "flex": null,
1425
+ "flex_flow": null,
1426
+ "grid_area": null,
1427
+ "grid_auto_columns": null,
1428
+ "grid_auto_flow": null,
1429
+ "grid_auto_rows": null,
1430
+ "grid_column": null,
1431
+ "grid_gap": null,
1432
+ "grid_row": null,
1433
+ "grid_template_areas": null,
1434
+ "grid_template_columns": null,
1435
+ "grid_template_rows": null,
1436
+ "height": null,
1437
+ "justify_content": null,
1438
+ "justify_items": null,
1439
+ "left": null,
1440
+ "margin": null,
1441
+ "max_height": null,
1442
+ "max_width": null,
1443
+ "min_height": null,
1444
+ "min_width": null,
1445
+ "object_fit": null,
1446
+ "object_position": null,
1447
+ "order": null,
1448
+ "overflow": null,
1449
+ "overflow_x": null,
1450
+ "overflow_y": null,
1451
+ "padding": null,
1452
+ "right": null,
1453
+ "top": null,
1454
+ "visibility": null,
1455
+ "width": null
1456
+ }
1457
+ },
1458
+ "78b5111866184eb096cdfb432a4d2c49": {
1459
+ "model_module": "@jupyter-widgets/controls",
1460
+ "model_name": "ProgressStyleModel",
1461
+ "model_module_version": "1.5.0",
1462
+ "state": {
1463
+ "_model_module": "@jupyter-widgets/controls",
1464
+ "_model_module_version": "1.5.0",
1465
+ "_model_name": "ProgressStyleModel",
1466
+ "_view_count": null,
1467
+ "_view_module": "@jupyter-widgets/base",
1468
+ "_view_module_version": "1.2.0",
1469
+ "_view_name": "StyleView",
1470
+ "bar_color": null,
1471
+ "description_width": ""
1472
+ }
1473
+ },
1474
+ "2e91d31351fe4c06b0d7827e12686607": {
1475
+ "model_module": "@jupyter-widgets/base",
1476
+ "model_name": "LayoutModel",
1477
+ "model_module_version": "1.2.0",
1478
+ "state": {
1479
+ "_model_module": "@jupyter-widgets/base",
1480
+ "_model_module_version": "1.2.0",
1481
+ "_model_name": "LayoutModel",
1482
+ "_view_count": null,
1483
+ "_view_module": "@jupyter-widgets/base",
1484
+ "_view_module_version": "1.2.0",
1485
+ "_view_name": "LayoutView",
1486
+ "align_content": null,
1487
+ "align_items": null,
1488
+ "align_self": null,
1489
+ "border": null,
1490
+ "bottom": null,
1491
+ "display": null,
1492
+ "flex": null,
1493
+ "flex_flow": null,
1494
+ "grid_area": null,
1495
+ "grid_auto_columns": null,
1496
+ "grid_auto_flow": null,
1497
+ "grid_auto_rows": null,
1498
+ "grid_column": null,
1499
+ "grid_gap": null,
1500
+ "grid_row": null,
1501
+ "grid_template_areas": null,
1502
+ "grid_template_columns": null,
1503
+ "grid_template_rows": null,
1504
+ "height": null,
1505
+ "justify_content": null,
1506
+ "justify_items": null,
1507
+ "left": null,
1508
+ "margin": null,
1509
+ "max_height": null,
1510
+ "max_width": null,
1511
+ "min_height": null,
1512
+ "min_width": null,
1513
+ "object_fit": null,
1514
+ "object_position": null,
1515
+ "order": null,
1516
+ "overflow": null,
1517
+ "overflow_x": null,
1518
+ "overflow_y": null,
1519
+ "padding": null,
1520
+ "right": null,
1521
+ "top": null,
1522
+ "visibility": null,
1523
+ "width": null
1524
+ }
1525
+ },
1526
+ "44dfbae45a8848a1bc84e12ebd9e93b6": {
1527
+ "model_module": "@jupyter-widgets/controls",
1528
+ "model_name": "DescriptionStyleModel",
1529
+ "model_module_version": "1.5.0",
1530
+ "state": {
1531
+ "_model_module": "@jupyter-widgets/controls",
1532
+ "_model_module_version": "1.5.0",
1533
+ "_model_name": "DescriptionStyleModel",
1534
+ "_view_count": null,
1535
+ "_view_module": "@jupyter-widgets/base",
1536
+ "_view_module_version": "1.2.0",
1537
+ "_view_name": "StyleView",
1538
+ "description_width": ""
1539
+ }
1540
+ },
1541
+ "d0afdae8789b42d4985b0c4fda3c2564": {
1542
+ "model_module": "@jupyter-widgets/controls",
1543
+ "model_name": "HBoxModel",
1544
+ "model_module_version": "1.5.0",
1545
+ "state": {
1546
+ "_dom_classes": [],
1547
+ "_model_module": "@jupyter-widgets/controls",
1548
+ "_model_module_version": "1.5.0",
1549
+ "_model_name": "HBoxModel",
1550
+ "_view_count": null,
1551
+ "_view_module": "@jupyter-widgets/controls",
1552
+ "_view_module_version": "1.5.0",
1553
+ "_view_name": "HBoxView",
1554
+ "box_style": "",
1555
+ "children": [
1556
+ "IPY_MODEL_7c960dc2e1264d6d813ea2b9c878ffa2",
1557
+ "IPY_MODEL_bd09a7a58ff14190b3a683c0e2e4ff79",
1558
+ "IPY_MODEL_4b832750eab0451997a0f892d38db423"
1559
+ ],
1560
+ "layout": "IPY_MODEL_1bbf5fae9a2c4e32b3d3d162db1c9b5f"
1561
+ }
1562
+ },
1563
+ "7c960dc2e1264d6d813ea2b9c878ffa2": {
1564
+ "model_module": "@jupyter-widgets/controls",
1565
+ "model_name": "HTMLModel",
1566
+ "model_module_version": "1.5.0",
1567
+ "state": {
1568
+ "_dom_classes": [],
1569
+ "_model_module": "@jupyter-widgets/controls",
1570
+ "_model_module_version": "1.5.0",
1571
+ "_model_name": "HTMLModel",
1572
+ "_view_count": null,
1573
+ "_view_module": "@jupyter-widgets/controls",
1574
+ "_view_module_version": "1.5.0",
1575
+ "_view_name": "HTMLView",
1576
+ "description": "",
1577
+ "description_tooltip": null,
1578
+ "layout": "IPY_MODEL_7ec362f6554f416384b1a03a3ea41eb9",
1579
+ "placeholder": "​",
1580
+ "style": "IPY_MODEL_594493b81e6f45cc94d9d44c2804d042",
1581
+ "value": "vocab.txt: 100%"
1582
+ }
1583
+ },
1584
+ "bd09a7a58ff14190b3a683c0e2e4ff79": {
1585
+ "model_module": "@jupyter-widgets/controls",
1586
+ "model_name": "FloatProgressModel",
1587
+ "model_module_version": "1.5.0",
1588
+ "state": {
1589
+ "_dom_classes": [],
1590
+ "_model_module": "@jupyter-widgets/controls",
1591
+ "_model_module_version": "1.5.0",
1592
+ "_model_name": "FloatProgressModel",
1593
+ "_view_count": null,
1594
+ "_view_module": "@jupyter-widgets/controls",
1595
+ "_view_module_version": "1.5.0",
1596
+ "_view_name": "ProgressView",
1597
+ "bar_style": "success",
1598
+ "description": "",
1599
+ "description_tooltip": null,
1600
+ "layout": "IPY_MODEL_141ba72718e043edb793f7869b2fedb5",
1601
+ "max": 231508,
1602
+ "min": 0,
1603
+ "orientation": "horizontal",
1604
+ "style": "IPY_MODEL_494f55304a184a518e4e35edf39dd7a2",
1605
+ "value": 231508
1606
+ }
1607
+ },
1608
+ "4b832750eab0451997a0f892d38db423": {
1609
+ "model_module": "@jupyter-widgets/controls",
1610
+ "model_name": "HTMLModel",
1611
+ "model_module_version": "1.5.0",
1612
+ "state": {
1613
+ "_dom_classes": [],
1614
+ "_model_module": "@jupyter-widgets/controls",
1615
+ "_model_module_version": "1.5.0",
1616
+ "_model_name": "HTMLModel",
1617
+ "_view_count": null,
1618
+ "_view_module": "@jupyter-widgets/controls",
1619
+ "_view_module_version": "1.5.0",
1620
+ "_view_name": "HTMLView",
1621
+ "description": "",
1622
+ "description_tooltip": null,
1623
+ "layout": "IPY_MODEL_48d903cf22d84ecb8cd5af5874567536",
1624
+ "placeholder": "​",
1625
+ "style": "IPY_MODEL_c97fb6b54c474f11ab1fee9aff91cf47",
1626
+ "value": " 232k/232k [00:00&lt;00:00, 2.28MB/s]"
1627
+ }
1628
+ },
1629
+ "1bbf5fae9a2c4e32b3d3d162db1c9b5f": {
1630
+ "model_module": "@jupyter-widgets/base",
1631
+ "model_name": "LayoutModel",
1632
+ "model_module_version": "1.2.0",
1633
+ "state": {
1634
+ "_model_module": "@jupyter-widgets/base",
1635
+ "_model_module_version": "1.2.0",
1636
+ "_model_name": "LayoutModel",
1637
+ "_view_count": null,
1638
+ "_view_module": "@jupyter-widgets/base",
1639
+ "_view_module_version": "1.2.0",
1640
+ "_view_name": "LayoutView",
1641
+ "align_content": null,
1642
+ "align_items": null,
1643
+ "align_self": null,
1644
+ "border": null,
1645
+ "bottom": null,
1646
+ "display": null,
1647
+ "flex": null,
1648
+ "flex_flow": null,
1649
+ "grid_area": null,
1650
+ "grid_auto_columns": null,
1651
+ "grid_auto_flow": null,
1652
+ "grid_auto_rows": null,
1653
+ "grid_column": null,
1654
+ "grid_gap": null,
1655
+ "grid_row": null,
1656
+ "grid_template_areas": null,
1657
+ "grid_template_columns": null,
1658
+ "grid_template_rows": null,
1659
+ "height": null,
1660
+ "justify_content": null,
1661
+ "justify_items": null,
1662
+ "left": null,
1663
+ "margin": null,
1664
+ "max_height": null,
1665
+ "max_width": null,
1666
+ "min_height": null,
1667
+ "min_width": null,
1668
+ "object_fit": null,
1669
+ "object_position": null,
1670
+ "order": null,
1671
+ "overflow": null,
1672
+ "overflow_x": null,
1673
+ "overflow_y": null,
1674
+ "padding": null,
1675
+ "right": null,
1676
+ "top": null,
1677
+ "visibility": null,
1678
+ "width": null
1679
+ }
1680
+ },
1681
+ "7ec362f6554f416384b1a03a3ea41eb9": {
1682
+ "model_module": "@jupyter-widgets/base",
1683
+ "model_name": "LayoutModel",
1684
+ "model_module_version": "1.2.0",
1685
+ "state": {
1686
+ "_model_module": "@jupyter-widgets/base",
1687
+ "_model_module_version": "1.2.0",
1688
+ "_model_name": "LayoutModel",
1689
+ "_view_count": null,
1690
+ "_view_module": "@jupyter-widgets/base",
1691
+ "_view_module_version": "1.2.0",
1692
+ "_view_name": "LayoutView",
1693
+ "align_content": null,
1694
+ "align_items": null,
1695
+ "align_self": null,
1696
+ "border": null,
1697
+ "bottom": null,
1698
+ "display": null,
1699
+ "flex": null,
1700
+ "flex_flow": null,
1701
+ "grid_area": null,
1702
+ "grid_auto_columns": null,
1703
+ "grid_auto_flow": null,
1704
+ "grid_auto_rows": null,
1705
+ "grid_column": null,
1706
+ "grid_gap": null,
1707
+ "grid_row": null,
1708
+ "grid_template_areas": null,
1709
+ "grid_template_columns": null,
1710
+ "grid_template_rows": null,
1711
+ "height": null,
1712
+ "justify_content": null,
1713
+ "justify_items": null,
1714
+ "left": null,
1715
+ "margin": null,
1716
+ "max_height": null,
1717
+ "max_width": null,
1718
+ "min_height": null,
1719
+ "min_width": null,
1720
+ "object_fit": null,
1721
+ "object_position": null,
1722
+ "order": null,
1723
+ "overflow": null,
1724
+ "overflow_x": null,
1725
+ "overflow_y": null,
1726
+ "padding": null,
1727
+ "right": null,
1728
+ "top": null,
1729
+ "visibility": null,
1730
+ "width": null
1731
+ }
1732
+ },
1733
+ "594493b81e6f45cc94d9d44c2804d042": {
1734
+ "model_module": "@jupyter-widgets/controls",
1735
+ "model_name": "DescriptionStyleModel",
1736
+ "model_module_version": "1.5.0",
1737
+ "state": {
1738
+ "_model_module": "@jupyter-widgets/controls",
1739
+ "_model_module_version": "1.5.0",
1740
+ "_model_name": "DescriptionStyleModel",
1741
+ "_view_count": null,
1742
+ "_view_module": "@jupyter-widgets/base",
1743
+ "_view_module_version": "1.2.0",
1744
+ "_view_name": "StyleView",
1745
+ "description_width": ""
1746
+ }
1747
+ },
1748
+ "141ba72718e043edb793f7869b2fedb5": {
1749
+ "model_module": "@jupyter-widgets/base",
1750
+ "model_name": "LayoutModel",
1751
+ "model_module_version": "1.2.0",
1752
+ "state": {
1753
+ "_model_module": "@jupyter-widgets/base",
1754
+ "_model_module_version": "1.2.0",
1755
+ "_model_name": "LayoutModel",
1756
+ "_view_count": null,
1757
+ "_view_module": "@jupyter-widgets/base",
1758
+ "_view_module_version": "1.2.0",
1759
+ "_view_name": "LayoutView",
1760
+ "align_content": null,
1761
+ "align_items": null,
1762
+ "align_self": null,
1763
+ "border": null,
1764
+ "bottom": null,
1765
+ "display": null,
1766
+ "flex": null,
1767
+ "flex_flow": null,
1768
+ "grid_area": null,
1769
+ "grid_auto_columns": null,
1770
+ "grid_auto_flow": null,
1771
+ "grid_auto_rows": null,
1772
+ "grid_column": null,
1773
+ "grid_gap": null,
1774
+ "grid_row": null,
1775
+ "grid_template_areas": null,
1776
+ "grid_template_columns": null,
1777
+ "grid_template_rows": null,
1778
+ "height": null,
1779
+ "justify_content": null,
1780
+ "justify_items": null,
1781
+ "left": null,
1782
+ "margin": null,
1783
+ "max_height": null,
1784
+ "max_width": null,
1785
+ "min_height": null,
1786
+ "min_width": null,
1787
+ "object_fit": null,
1788
+ "object_position": null,
1789
+ "order": null,
1790
+ "overflow": null,
1791
+ "overflow_x": null,
1792
+ "overflow_y": null,
1793
+ "padding": null,
1794
+ "right": null,
1795
+ "top": null,
1796
+ "visibility": null,
1797
+ "width": null
1798
+ }
1799
+ },
1800
+ "494f55304a184a518e4e35edf39dd7a2": {
1801
+ "model_module": "@jupyter-widgets/controls",
1802
+ "model_name": "ProgressStyleModel",
1803
+ "model_module_version": "1.5.0",
1804
+ "state": {
1805
+ "_model_module": "@jupyter-widgets/controls",
1806
+ "_model_module_version": "1.5.0",
1807
+ "_model_name": "ProgressStyleModel",
1808
+ "_view_count": null,
1809
+ "_view_module": "@jupyter-widgets/base",
1810
+ "_view_module_version": "1.2.0",
1811
+ "_view_name": "StyleView",
1812
+ "bar_color": null,
1813
+ "description_width": ""
1814
+ }
1815
+ },
1816
+ "48d903cf22d84ecb8cd5af5874567536": {
1817
+ "model_module": "@jupyter-widgets/base",
1818
+ "model_name": "LayoutModel",
1819
+ "model_module_version": "1.2.0",
1820
+ "state": {
1821
+ "_model_module": "@jupyter-widgets/base",
1822
+ "_model_module_version": "1.2.0",
1823
+ "_model_name": "LayoutModel",
1824
+ "_view_count": null,
1825
+ "_view_module": "@jupyter-widgets/base",
1826
+ "_view_module_version": "1.2.0",
1827
+ "_view_name": "LayoutView",
1828
+ "align_content": null,
1829
+ "align_items": null,
1830
+ "align_self": null,
1831
+ "border": null,
1832
+ "bottom": null,
1833
+ "display": null,
1834
+ "flex": null,
1835
+ "flex_flow": null,
1836
+ "grid_area": null,
1837
+ "grid_auto_columns": null,
1838
+ "grid_auto_flow": null,
1839
+ "grid_auto_rows": null,
1840
+ "grid_column": null,
1841
+ "grid_gap": null,
1842
+ "grid_row": null,
1843
+ "grid_template_areas": null,
1844
+ "grid_template_columns": null,
1845
+ "grid_template_rows": null,
1846
+ "height": null,
1847
+ "justify_content": null,
1848
+ "justify_items": null,
1849
+ "left": null,
1850
+ "margin": null,
1851
+ "max_height": null,
1852
+ "max_width": null,
1853
+ "min_height": null,
1854
+ "min_width": null,
1855
+ "object_fit": null,
1856
+ "object_position": null,
1857
+ "order": null,
1858
+ "overflow": null,
1859
+ "overflow_x": null,
1860
+ "overflow_y": null,
1861
+ "padding": null,
1862
+ "right": null,
1863
+ "top": null,
1864
+ "visibility": null,
1865
+ "width": null
1866
+ }
1867
+ },
1868
+ "c97fb6b54c474f11ab1fee9aff91cf47": {
1869
+ "model_module": "@jupyter-widgets/controls",
1870
+ "model_name": "DescriptionStyleModel",
1871
+ "model_module_version": "1.5.0",
1872
+ "state": {
1873
+ "_model_module": "@jupyter-widgets/controls",
1874
+ "_model_module_version": "1.5.0",
1875
+ "_model_name": "DescriptionStyleModel",
1876
+ "_view_count": null,
1877
+ "_view_module": "@jupyter-widgets/base",
1878
+ "_view_module_version": "1.2.0",
1879
+ "_view_name": "StyleView",
1880
+ "description_width": ""
1881
+ }
1882
+ },
1883
+ "03f2530b9b444d48931daa2ca900bb9e": {
1884
+ "model_module": "@jupyter-widgets/controls",
1885
+ "model_name": "HBoxModel",
1886
+ "model_module_version": "1.5.0",
1887
+ "state": {
1888
+ "_dom_classes": [],
1889
+ "_model_module": "@jupyter-widgets/controls",
1890
+ "_model_module_version": "1.5.0",
1891
+ "_model_name": "HBoxModel",
1892
+ "_view_count": null,
1893
+ "_view_module": "@jupyter-widgets/controls",
1894
+ "_view_module_version": "1.5.0",
1895
+ "_view_name": "HBoxView",
1896
+ "box_style": "",
1897
+ "children": [
1898
+ "IPY_MODEL_ded0e4189e594d31b190dbca2efd9cd4",
1899
+ "IPY_MODEL_1bed16416cb945828b250748028e4be9",
1900
+ "IPY_MODEL_75b649dfd7304bebad995e992d379fa5"
1901
+ ],
1902
+ "layout": "IPY_MODEL_a20d444fee7b4919ab47e5bcd69e853a"
1903
+ }
1904
+ },
1905
+ "ded0e4189e594d31b190dbca2efd9cd4": {
1906
+ "model_module": "@jupyter-widgets/controls",
1907
+ "model_name": "HTMLModel",
1908
+ "model_module_version": "1.5.0",
1909
+ "state": {
1910
+ "_dom_classes": [],
1911
+ "_model_module": "@jupyter-widgets/controls",
1912
+ "_model_module_version": "1.5.0",
1913
+ "_model_name": "HTMLModel",
1914
+ "_view_count": null,
1915
+ "_view_module": "@jupyter-widgets/controls",
1916
+ "_view_module_version": "1.5.0",
1917
+ "_view_name": "HTMLView",
1918
+ "description": "",
1919
+ "description_tooltip": null,
1920
+ "layout": "IPY_MODEL_c330eadc3acc4ddc95f061bf8e841dad",
1921
+ "placeholder": "​",
1922
+ "style": "IPY_MODEL_777ec9ccae5240048cdd3212a40ce632",
1923
+ "value": "tokenizer.json: 100%"
1924
+ }
1925
+ },
1926
+ "1bed16416cb945828b250748028e4be9": {
1927
+ "model_module": "@jupyter-widgets/controls",
1928
+ "model_name": "FloatProgressModel",
1929
+ "model_module_version": "1.5.0",
1930
+ "state": {
1931
+ "_dom_classes": [],
1932
+ "_model_module": "@jupyter-widgets/controls",
1933
+ "_model_module_version": "1.5.0",
1934
+ "_model_name": "FloatProgressModel",
1935
+ "_view_count": null,
1936
+ "_view_module": "@jupyter-widgets/controls",
1937
+ "_view_module_version": "1.5.0",
1938
+ "_view_name": "ProgressView",
1939
+ "bar_style": "success",
1940
+ "description": "",
1941
+ "description_tooltip": null,
1942
+ "layout": "IPY_MODEL_1a61aa0c0b6047f58eff4feb7aa32959",
1943
+ "max": 466062,
1944
+ "min": 0,
1945
+ "orientation": "horizontal",
1946
+ "style": "IPY_MODEL_17a3d48a545b4876849fe4ffc764752c",
1947
+ "value": 466062
1948
+ }
1949
+ },
1950
+ "75b649dfd7304bebad995e992d379fa5": {
1951
+ "model_module": "@jupyter-widgets/controls",
1952
+ "model_name": "HTMLModel",
1953
+ "model_module_version": "1.5.0",
1954
+ "state": {
1955
+ "_dom_classes": [],
1956
+ "_model_module": "@jupyter-widgets/controls",
1957
+ "_model_module_version": "1.5.0",
1958
+ "_model_name": "HTMLModel",
1959
+ "_view_count": null,
1960
+ "_view_module": "@jupyter-widgets/controls",
1961
+ "_view_module_version": "1.5.0",
1962
+ "_view_name": "HTMLView",
1963
+ "description": "",
1964
+ "description_tooltip": null,
1965
+ "layout": "IPY_MODEL_681827839e92433e8dd25faa888c0680",
1966
+ "placeholder": "​",
1967
+ "style": "IPY_MODEL_514ab933abbb44eda2cbfd7b6d5ff47a",
1968
+ "value": " 466k/466k [00:00&lt;00:00, 9.05MB/s]"
1969
+ }
1970
+ },
1971
+ "a20d444fee7b4919ab47e5bcd69e853a": {
1972
+ "model_module": "@jupyter-widgets/base",
1973
+ "model_name": "LayoutModel",
1974
+ "model_module_version": "1.2.0",
1975
+ "state": {
1976
+ "_model_module": "@jupyter-widgets/base",
1977
+ "_model_module_version": "1.2.0",
1978
+ "_model_name": "LayoutModel",
1979
+ "_view_count": null,
1980
+ "_view_module": "@jupyter-widgets/base",
1981
+ "_view_module_version": "1.2.0",
1982
+ "_view_name": "LayoutView",
1983
+ "align_content": null,
1984
+ "align_items": null,
1985
+ "align_self": null,
1986
+ "border": null,
1987
+ "bottom": null,
1988
+ "display": null,
1989
+ "flex": null,
1990
+ "flex_flow": null,
1991
+ "grid_area": null,
1992
+ "grid_auto_columns": null,
1993
+ "grid_auto_flow": null,
1994
+ "grid_auto_rows": null,
1995
+ "grid_column": null,
1996
+ "grid_gap": null,
1997
+ "grid_row": null,
1998
+ "grid_template_areas": null,
1999
+ "grid_template_columns": null,
2000
+ "grid_template_rows": null,
2001
+ "height": null,
2002
+ "justify_content": null,
2003
+ "justify_items": null,
2004
+ "left": null,
2005
+ "margin": null,
2006
+ "max_height": null,
2007
+ "max_width": null,
2008
+ "min_height": null,
2009
+ "min_width": null,
2010
+ "object_fit": null,
2011
+ "object_position": null,
2012
+ "order": null,
2013
+ "overflow": null,
2014
+ "overflow_x": null,
2015
+ "overflow_y": null,
2016
+ "padding": null,
2017
+ "right": null,
2018
+ "top": null,
2019
+ "visibility": null,
2020
+ "width": null
2021
+ }
2022
+ },
2023
+ "c330eadc3acc4ddc95f061bf8e841dad": {
2024
+ "model_module": "@jupyter-widgets/base",
2025
+ "model_name": "LayoutModel",
2026
+ "model_module_version": "1.2.0",
2027
+ "state": {
2028
+ "_model_module": "@jupyter-widgets/base",
2029
+ "_model_module_version": "1.2.0",
2030
+ "_model_name": "LayoutModel",
2031
+ "_view_count": null,
2032
+ "_view_module": "@jupyter-widgets/base",
2033
+ "_view_module_version": "1.2.0",
2034
+ "_view_name": "LayoutView",
2035
+ "align_content": null,
2036
+ "align_items": null,
2037
+ "align_self": null,
2038
+ "border": null,
2039
+ "bottom": null,
2040
+ "display": null,
2041
+ "flex": null,
2042
+ "flex_flow": null,
2043
+ "grid_area": null,
2044
+ "grid_auto_columns": null,
2045
+ "grid_auto_flow": null,
2046
+ "grid_auto_rows": null,
2047
+ "grid_column": null,
2048
+ "grid_gap": null,
2049
+ "grid_row": null,
2050
+ "grid_template_areas": null,
2051
+ "grid_template_columns": null,
2052
+ "grid_template_rows": null,
2053
+ "height": null,
2054
+ "justify_content": null,
2055
+ "justify_items": null,
2056
+ "left": null,
2057
+ "margin": null,
2058
+ "max_height": null,
2059
+ "max_width": null,
2060
+ "min_height": null,
2061
+ "min_width": null,
2062
+ "object_fit": null,
2063
+ "object_position": null,
2064
+ "order": null,
2065
+ "overflow": null,
2066
+ "overflow_x": null,
2067
+ "overflow_y": null,
2068
+ "padding": null,
2069
+ "right": null,
2070
+ "top": null,
2071
+ "visibility": null,
2072
+ "width": null
2073
+ }
2074
+ },
2075
+ "777ec9ccae5240048cdd3212a40ce632": {
2076
+ "model_module": "@jupyter-widgets/controls",
2077
+ "model_name": "DescriptionStyleModel",
2078
+ "model_module_version": "1.5.0",
2079
+ "state": {
2080
+ "_model_module": "@jupyter-widgets/controls",
2081
+ "_model_module_version": "1.5.0",
2082
+ "_model_name": "DescriptionStyleModel",
2083
+ "_view_count": null,
2084
+ "_view_module": "@jupyter-widgets/base",
2085
+ "_view_module_version": "1.2.0",
2086
+ "_view_name": "StyleView",
2087
+ "description_width": ""
2088
+ }
2089
+ },
2090
+ "1a61aa0c0b6047f58eff4feb7aa32959": {
2091
+ "model_module": "@jupyter-widgets/base",
2092
+ "model_name": "LayoutModel",
2093
+ "model_module_version": "1.2.0",
2094
+ "state": {
2095
+ "_model_module": "@jupyter-widgets/base",
2096
+ "_model_module_version": "1.2.0",
2097
+ "_model_name": "LayoutModel",
2098
+ "_view_count": null,
2099
+ "_view_module": "@jupyter-widgets/base",
2100
+ "_view_module_version": "1.2.0",
2101
+ "_view_name": "LayoutView",
2102
+ "align_content": null,
2103
+ "align_items": null,
2104
+ "align_self": null,
2105
+ "border": null,
2106
+ "bottom": null,
2107
+ "display": null,
2108
+ "flex": null,
2109
+ "flex_flow": null,
2110
+ "grid_area": null,
2111
+ "grid_auto_columns": null,
2112
+ "grid_auto_flow": null,
2113
+ "grid_auto_rows": null,
2114
+ "grid_column": null,
2115
+ "grid_gap": null,
2116
+ "grid_row": null,
2117
+ "grid_template_areas": null,
2118
+ "grid_template_columns": null,
2119
+ "grid_template_rows": null,
2120
+ "height": null,
2121
+ "justify_content": null,
2122
+ "justify_items": null,
2123
+ "left": null,
2124
+ "margin": null,
2125
+ "max_height": null,
2126
+ "max_width": null,
2127
+ "min_height": null,
2128
+ "min_width": null,
2129
+ "object_fit": null,
2130
+ "object_position": null,
2131
+ "order": null,
2132
+ "overflow": null,
2133
+ "overflow_x": null,
2134
+ "overflow_y": null,
2135
+ "padding": null,
2136
+ "right": null,
2137
+ "top": null,
2138
+ "visibility": null,
2139
+ "width": null
2140
+ }
2141
+ },
2142
+ "17a3d48a545b4876849fe4ffc764752c": {
2143
+ "model_module": "@jupyter-widgets/controls",
2144
+ "model_name": "ProgressStyleModel",
2145
+ "model_module_version": "1.5.0",
2146
+ "state": {
2147
+ "_model_module": "@jupyter-widgets/controls",
2148
+ "_model_module_version": "1.5.0",
2149
+ "_model_name": "ProgressStyleModel",
2150
+ "_view_count": null,
2151
+ "_view_module": "@jupyter-widgets/base",
2152
+ "_view_module_version": "1.2.0",
2153
+ "_view_name": "StyleView",
2154
+ "bar_color": null,
2155
+ "description_width": ""
2156
+ }
2157
+ },
2158
+ "681827839e92433e8dd25faa888c0680": {
2159
+ "model_module": "@jupyter-widgets/base",
2160
+ "model_name": "LayoutModel",
2161
+ "model_module_version": "1.2.0",
2162
+ "state": {
2163
+ "_model_module": "@jupyter-widgets/base",
2164
+ "_model_module_version": "1.2.0",
2165
+ "_model_name": "LayoutModel",
2166
+ "_view_count": null,
2167
+ "_view_module": "@jupyter-widgets/base",
2168
+ "_view_module_version": "1.2.0",
2169
+ "_view_name": "LayoutView",
2170
+ "align_content": null,
2171
+ "align_items": null,
2172
+ "align_self": null,
2173
+ "border": null,
2174
+ "bottom": null,
2175
+ "display": null,
2176
+ "flex": null,
2177
+ "flex_flow": null,
2178
+ "grid_area": null,
2179
+ "grid_auto_columns": null,
2180
+ "grid_auto_flow": null,
2181
+ "grid_auto_rows": null,
2182
+ "grid_column": null,
2183
+ "grid_gap": null,
2184
+ "grid_row": null,
2185
+ "grid_template_areas": null,
2186
+ "grid_template_columns": null,
2187
+ "grid_template_rows": null,
2188
+ "height": null,
2189
+ "justify_content": null,
2190
+ "justify_items": null,
2191
+ "left": null,
2192
+ "margin": null,
2193
+ "max_height": null,
2194
+ "max_width": null,
2195
+ "min_height": null,
2196
+ "min_width": null,
2197
+ "object_fit": null,
2198
+ "object_position": null,
2199
+ "order": null,
2200
+ "overflow": null,
2201
+ "overflow_x": null,
2202
+ "overflow_y": null,
2203
+ "padding": null,
2204
+ "right": null,
2205
+ "top": null,
2206
+ "visibility": null,
2207
+ "width": null
2208
+ }
2209
+ },
2210
+ "514ab933abbb44eda2cbfd7b6d5ff47a": {
2211
+ "model_module": "@jupyter-widgets/controls",
2212
+ "model_name": "DescriptionStyleModel",
2213
+ "model_module_version": "1.5.0",
2214
+ "state": {
2215
+ "_model_module": "@jupyter-widgets/controls",
2216
+ "_model_module_version": "1.5.0",
2217
+ "_model_name": "DescriptionStyleModel",
2218
+ "_view_count": null,
2219
+ "_view_module": "@jupyter-widgets/base",
2220
+ "_view_module_version": "1.2.0",
2221
+ "_view_name": "StyleView",
2222
+ "description_width": ""
2223
+ }
2224
+ },
2225
+ "338ca79c5d294a2e967166437813b668": {
2226
+ "model_module": "@jupyter-widgets/controls",
2227
+ "model_name": "HBoxModel",
2228
+ "model_module_version": "1.5.0",
2229
+ "state": {
2230
+ "_dom_classes": [],
2231
+ "_model_module": "@jupyter-widgets/controls",
2232
+ "_model_module_version": "1.5.0",
2233
+ "_model_name": "HBoxModel",
2234
+ "_view_count": null,
2235
+ "_view_module": "@jupyter-widgets/controls",
2236
+ "_view_module_version": "1.5.0",
2237
+ "_view_name": "HBoxView",
2238
+ "box_style": "",
2239
+ "children": [
2240
+ "IPY_MODEL_841711bda59a4625b9a8bae26caed181",
2241
+ "IPY_MODEL_3f04bf02bc2149c189bbf00c36ac7107",
2242
+ "IPY_MODEL_21e9b97580f440a38a484e136ddadfb2"
2243
+ ],
2244
+ "layout": "IPY_MODEL_d1e66db731e949cb8fb16c0bb35729ae"
2245
+ }
2246
+ },
2247
+ "841711bda59a4625b9a8bae26caed181": {
2248
+ "model_module": "@jupyter-widgets/controls",
2249
+ "model_name": "HTMLModel",
2250
+ "model_module_version": "1.5.0",
2251
+ "state": {
2252
+ "_dom_classes": [],
2253
+ "_model_module": "@jupyter-widgets/controls",
2254
+ "_model_module_version": "1.5.0",
2255
+ "_model_name": "HTMLModel",
2256
+ "_view_count": null,
2257
+ "_view_module": "@jupyter-widgets/controls",
2258
+ "_view_module_version": "1.5.0",
2259
+ "_view_name": "HTMLView",
2260
+ "description": "",
2261
+ "description_tooltip": null,
2262
+ "layout": "IPY_MODEL_725592c335604e9b95eaaf9852fd588e",
2263
+ "placeholder": "​",
2264
+ "style": "IPY_MODEL_8c25c42889db4936af2626284c8c2bfc",
2265
+ "value": "config.json: 100%"
2266
+ }
2267
+ },
2268
+ "3f04bf02bc2149c189bbf00c36ac7107": {
2269
+ "model_module": "@jupyter-widgets/controls",
2270
+ "model_name": "FloatProgressModel",
2271
+ "model_module_version": "1.5.0",
2272
+ "state": {
2273
+ "_dom_classes": [],
2274
+ "_model_module": "@jupyter-widgets/controls",
2275
+ "_model_module_version": "1.5.0",
2276
+ "_model_name": "FloatProgressModel",
2277
+ "_view_count": null,
2278
+ "_view_module": "@jupyter-widgets/controls",
2279
+ "_view_module_version": "1.5.0",
2280
+ "_view_name": "ProgressView",
2281
+ "bar_style": "success",
2282
+ "description": "",
2283
+ "description_tooltip": null,
2284
+ "layout": "IPY_MODEL_d0c60871f88d4405881aabac6e732de9",
2285
+ "max": 570,
2286
+ "min": 0,
2287
+ "orientation": "horizontal",
2288
+ "style": "IPY_MODEL_c7f502323c1e45b696d1c79db8b93ba7",
2289
+ "value": 570
2290
+ }
2291
+ },
2292
+ "21e9b97580f440a38a484e136ddadfb2": {
2293
+ "model_module": "@jupyter-widgets/controls",
2294
+ "model_name": "HTMLModel",
2295
+ "model_module_version": "1.5.0",
2296
+ "state": {
2297
+ "_dom_classes": [],
2298
+ "_model_module": "@jupyter-widgets/controls",
2299
+ "_model_module_version": "1.5.0",
2300
+ "_model_name": "HTMLModel",
2301
+ "_view_count": null,
2302
+ "_view_module": "@jupyter-widgets/controls",
2303
+ "_view_module_version": "1.5.0",
2304
+ "_view_name": "HTMLView",
2305
+ "description": "",
2306
+ "description_tooltip": null,
2307
+ "layout": "IPY_MODEL_ef643c62650f419ca01d4266049f6c30",
2308
+ "placeholder": "​",
2309
+ "style": "IPY_MODEL_e3c9de4c383e489cb1d4e39ab9bd3683",
2310
+ "value": " 570/570 [00:00&lt;00:00, 17.8kB/s]"
2311
+ }
2312
+ },
2313
+ "d1e66db731e949cb8fb16c0bb35729ae": {
2314
+ "model_module": "@jupyter-widgets/base",
2315
+ "model_name": "LayoutModel",
2316
+ "model_module_version": "1.2.0",
2317
+ "state": {
2318
+ "_model_module": "@jupyter-widgets/base",
2319
+ "_model_module_version": "1.2.0",
2320
+ "_model_name": "LayoutModel",
2321
+ "_view_count": null,
2322
+ "_view_module": "@jupyter-widgets/base",
2323
+ "_view_module_version": "1.2.0",
2324
+ "_view_name": "LayoutView",
2325
+ "align_content": null,
2326
+ "align_items": null,
2327
+ "align_self": null,
2328
+ "border": null,
2329
+ "bottom": null,
2330
+ "display": null,
2331
+ "flex": null,
2332
+ "flex_flow": null,
2333
+ "grid_area": null,
2334
+ "grid_auto_columns": null,
2335
+ "grid_auto_flow": null,
2336
+ "grid_auto_rows": null,
2337
+ "grid_column": null,
2338
+ "grid_gap": null,
2339
+ "grid_row": null,
2340
+ "grid_template_areas": null,
2341
+ "grid_template_columns": null,
2342
+ "grid_template_rows": null,
2343
+ "height": null,
2344
+ "justify_content": null,
2345
+ "justify_items": null,
2346
+ "left": null,
2347
+ "margin": null,
2348
+ "max_height": null,
2349
+ "max_width": null,
2350
+ "min_height": null,
2351
+ "min_width": null,
2352
+ "object_fit": null,
2353
+ "object_position": null,
2354
+ "order": null,
2355
+ "overflow": null,
2356
+ "overflow_x": null,
2357
+ "overflow_y": null,
2358
+ "padding": null,
2359
+ "right": null,
2360
+ "top": null,
2361
+ "visibility": null,
2362
+ "width": null
2363
+ }
2364
+ },
2365
+ "725592c335604e9b95eaaf9852fd588e": {
2366
+ "model_module": "@jupyter-widgets/base",
2367
+ "model_name": "LayoutModel",
2368
+ "model_module_version": "1.2.0",
2369
+ "state": {
2370
+ "_model_module": "@jupyter-widgets/base",
2371
+ "_model_module_version": "1.2.0",
2372
+ "_model_name": "LayoutModel",
2373
+ "_view_count": null,
2374
+ "_view_module": "@jupyter-widgets/base",
2375
+ "_view_module_version": "1.2.0",
2376
+ "_view_name": "LayoutView",
2377
+ "align_content": null,
2378
+ "align_items": null,
2379
+ "align_self": null,
2380
+ "border": null,
2381
+ "bottom": null,
2382
+ "display": null,
2383
+ "flex": null,
2384
+ "flex_flow": null,
2385
+ "grid_area": null,
2386
+ "grid_auto_columns": null,
2387
+ "grid_auto_flow": null,
2388
+ "grid_auto_rows": null,
2389
+ "grid_column": null,
2390
+ "grid_gap": null,
2391
+ "grid_row": null,
2392
+ "grid_template_areas": null,
2393
+ "grid_template_columns": null,
2394
+ "grid_template_rows": null,
2395
+ "height": null,
2396
+ "justify_content": null,
2397
+ "justify_items": null,
2398
+ "left": null,
2399
+ "margin": null,
2400
+ "max_height": null,
2401
+ "max_width": null,
2402
+ "min_height": null,
2403
+ "min_width": null,
2404
+ "object_fit": null,
2405
+ "object_position": null,
2406
+ "order": null,
2407
+ "overflow": null,
2408
+ "overflow_x": null,
2409
+ "overflow_y": null,
2410
+ "padding": null,
2411
+ "right": null,
2412
+ "top": null,
2413
+ "visibility": null,
2414
+ "width": null
2415
+ }
2416
+ },
2417
+ "8c25c42889db4936af2626284c8c2bfc": {
2418
+ "model_module": "@jupyter-widgets/controls",
2419
+ "model_name": "DescriptionStyleModel",
2420
+ "model_module_version": "1.5.0",
2421
+ "state": {
2422
+ "_model_module": "@jupyter-widgets/controls",
2423
+ "_model_module_version": "1.5.0",
2424
+ "_model_name": "DescriptionStyleModel",
2425
+ "_view_count": null,
2426
+ "_view_module": "@jupyter-widgets/base",
2427
+ "_view_module_version": "1.2.0",
2428
+ "_view_name": "StyleView",
2429
+ "description_width": ""
2430
+ }
2431
+ },
2432
+ "d0c60871f88d4405881aabac6e732de9": {
2433
+ "model_module": "@jupyter-widgets/base",
2434
+ "model_name": "LayoutModel",
2435
+ "model_module_version": "1.2.0",
2436
+ "state": {
2437
+ "_model_module": "@jupyter-widgets/base",
2438
+ "_model_module_version": "1.2.0",
2439
+ "_model_name": "LayoutModel",
2440
+ "_view_count": null,
2441
+ "_view_module": "@jupyter-widgets/base",
2442
+ "_view_module_version": "1.2.0",
2443
+ "_view_name": "LayoutView",
2444
+ "align_content": null,
2445
+ "align_items": null,
2446
+ "align_self": null,
2447
+ "border": null,
2448
+ "bottom": null,
2449
+ "display": null,
2450
+ "flex": null,
2451
+ "flex_flow": null,
2452
+ "grid_area": null,
2453
+ "grid_auto_columns": null,
2454
+ "grid_auto_flow": null,
2455
+ "grid_auto_rows": null,
2456
+ "grid_column": null,
2457
+ "grid_gap": null,
2458
+ "grid_row": null,
2459
+ "grid_template_areas": null,
2460
+ "grid_template_columns": null,
2461
+ "grid_template_rows": null,
2462
+ "height": null,
2463
+ "justify_content": null,
2464
+ "justify_items": null,
2465
+ "left": null,
2466
+ "margin": null,
2467
+ "max_height": null,
2468
+ "max_width": null,
2469
+ "min_height": null,
2470
+ "min_width": null,
2471
+ "object_fit": null,
2472
+ "object_position": null,
2473
+ "order": null,
2474
+ "overflow": null,
2475
+ "overflow_x": null,
2476
+ "overflow_y": null,
2477
+ "padding": null,
2478
+ "right": null,
2479
+ "top": null,
2480
+ "visibility": null,
2481
+ "width": null
2482
+ }
2483
+ },
2484
+ "c7f502323c1e45b696d1c79db8b93ba7": {
2485
+ "model_module": "@jupyter-widgets/controls",
2486
+ "model_name": "ProgressStyleModel",
2487
+ "model_module_version": "1.5.0",
2488
+ "state": {
2489
+ "_model_module": "@jupyter-widgets/controls",
2490
+ "_model_module_version": "1.5.0",
2491
+ "_model_name": "ProgressStyleModel",
2492
+ "_view_count": null,
2493
+ "_view_module": "@jupyter-widgets/base",
2494
+ "_view_module_version": "1.2.0",
2495
+ "_view_name": "StyleView",
2496
+ "bar_color": null,
2497
+ "description_width": ""
2498
+ }
2499
+ },
2500
+ "ef643c62650f419ca01d4266049f6c30": {
2501
+ "model_module": "@jupyter-widgets/base",
2502
+ "model_name": "LayoutModel",
2503
+ "model_module_version": "1.2.0",
2504
+ "state": {
2505
+ "_model_module": "@jupyter-widgets/base",
2506
+ "_model_module_version": "1.2.0",
2507
+ "_model_name": "LayoutModel",
2508
+ "_view_count": null,
2509
+ "_view_module": "@jupyter-widgets/base",
2510
+ "_view_module_version": "1.2.0",
2511
+ "_view_name": "LayoutView",
2512
+ "align_content": null,
2513
+ "align_items": null,
2514
+ "align_self": null,
2515
+ "border": null,
2516
+ "bottom": null,
2517
+ "display": null,
2518
+ "flex": null,
2519
+ "flex_flow": null,
2520
+ "grid_area": null,
2521
+ "grid_auto_columns": null,
2522
+ "grid_auto_flow": null,
2523
+ "grid_auto_rows": null,
2524
+ "grid_column": null,
2525
+ "grid_gap": null,
2526
+ "grid_row": null,
2527
+ "grid_template_areas": null,
2528
+ "grid_template_columns": null,
2529
+ "grid_template_rows": null,
2530
+ "height": null,
2531
+ "justify_content": null,
2532
+ "justify_items": null,
2533
+ "left": null,
2534
+ "margin": null,
2535
+ "max_height": null,
2536
+ "max_width": null,
2537
+ "min_height": null,
2538
+ "min_width": null,
2539
+ "object_fit": null,
2540
+ "object_position": null,
2541
+ "order": null,
2542
+ "overflow": null,
2543
+ "overflow_x": null,
2544
+ "overflow_y": null,
2545
+ "padding": null,
2546
+ "right": null,
2547
+ "top": null,
2548
+ "visibility": null,
2549
+ "width": null
2550
+ }
2551
+ },
2552
+ "e3c9de4c383e489cb1d4e39ab9bd3683": {
2553
+ "model_module": "@jupyter-widgets/controls",
2554
+ "model_name": "DescriptionStyleModel",
2555
+ "model_module_version": "1.5.0",
2556
+ "state": {
2557
+ "_model_module": "@jupyter-widgets/controls",
2558
+ "_model_module_version": "1.5.0",
2559
+ "_model_name": "DescriptionStyleModel",
2560
+ "_view_count": null,
2561
+ "_view_module": "@jupyter-widgets/base",
2562
+ "_view_module_version": "1.2.0",
2563
+ "_view_name": "StyleView",
2564
+ "description_width": ""
2565
+ }
2566
+ }
2567
+ }
2568
+ }
2569
+ },
2570
+ "nbformat": 4,
2571
+ "nbformat_minor": 0
2572
+ }
bert_domain_advertising_classifier.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:830e351871999ea5d394e80a709bd2faebb38c552cd060993e00f8f746702195
3
+ size 8183622