Commit
·
26bae3d
1
Parent(s):
26316a9
update model card README.md
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss:
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,23 +43,32 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 3e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| No log | 1.0 |
|
58 |
-
| No log | 2.0 |
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.3325
|
23 |
+
- Precision: 0.0395
|
24 |
+
- Recall: 0.182
|
25 |
+
- F1: 0.0649
|
26 |
+
- Accuracy: 0.8597
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 3e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 43 | 1.5592 | 0.0020 | 0.124 | 0.0040 | 0.3311 |
|
58 |
+
| No log | 2.0 | 86 | 1.2689 | 0.0104 | 0.14 | 0.0193 | 0.6247 |
|
59 |
+
| No log | 3.0 | 129 | 1.1742 | 0.0110 | 0.172 | 0.0206 | 0.6614 |
|
60 |
+
| No log | 4.0 | 172 | 1.3716 | 0.0147 | 0.178 | 0.0271 | 0.6468 |
|
61 |
+
| No log | 5.0 | 215 | 1.3265 | 0.0177 | 0.178 | 0.0323 | 0.7203 |
|
62 |
+
| No log | 6.0 | 258 | 1.5835 | 0.0217 | 0.176 | 0.0386 | 0.7574 |
|
63 |
+
| No log | 7.0 | 301 | 1.6678 | 0.0249 | 0.174 | 0.0435 | 0.7952 |
|
64 |
+
| No log | 8.0 | 344 | 1.9432 | 0.0387 | 0.18 | 0.0636 | 0.8551 |
|
65 |
+
| No log | 9.0 | 387 | 1.9371 | 0.0306 | 0.188 | 0.0526 | 0.7962 |
|
66 |
+
| No log | 10.0 | 430 | 2.0129 | 0.0305 | 0.182 | 0.0523 | 0.8187 |
|
67 |
+
| No log | 11.0 | 473 | 2.1952 | 0.0402 | 0.192 | 0.0664 | 0.8595 |
|
68 |
+
| 0.5993 | 12.0 | 516 | 2.1873 | 0.0369 | 0.182 | 0.0614 | 0.8512 |
|
69 |
+
| 0.5993 | 13.0 | 559 | 2.2653 | 0.0394 | 0.18 | 0.0646 | 0.8583 |
|
70 |
+
| 0.5993 | 14.0 | 602 | 2.3001 | 0.0397 | 0.184 | 0.0653 | 0.8553 |
|
71 |
+
| 0.5993 | 15.0 | 645 | 2.3325 | 0.0395 | 0.182 | 0.0649 | 0.8597 |
|
72 |
|
73 |
|
74 |
### Framework versions
|