test README
Browse files
README.md
CHANGED
@@ -10,32 +10,40 @@ model-index:
|
|
10 |
- task:
|
11 |
type: text-classification
|
12 |
dataset:
|
13 |
-
name: mdk_gov_data_titles_clf
|
14 |
type: and-effect/mdk_gov_data_titles_clf
|
15 |
metrics:
|
16 |
-
- type:
|
17 |
-
value: 0.7
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
- type:
|
23 |
-
value: 0.
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
- type:
|
29 |
-
value: 0.
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
---
|
33 |
|
34 |
-
# Model Card for Musterdatenkatalog Classifier
|
35 |
|
36 |
<!-- Provide a quick summary of what the model is/does. -->
|
37 |
|
38 |
-
|
39 |
|
40 |
# Model Details
|
41 |
|
@@ -62,7 +70,7 @@ This model is based on bert-base-german-cased and fine-tuned on and-effect/mdk_g
|
|
62 |
|
63 |
# Direct Use
|
64 |
|
65 |
-
[
|
66 |
|
67 |
## Get Started with Sentence Transformers
|
68 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -146,7 +154,7 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
146 |
|
147 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
148 |
|
149 |
-
|
150 |
|
151 |
## Training Procedure [optional]
|
152 |
|
@@ -156,6 +164,32 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
156 |
|
157 |
[More Information Needed]
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
### Speeds, Sizes, Times
|
160 |
|
161 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
|
|
10 |
- task:
|
11 |
type: text-classification
|
12 |
dataset:
|
13 |
+
name: and-effect/mdk_gov_data_titles_clf
|
14 |
type: and-effect/mdk_gov_data_titles_clf
|
15 |
metrics:
|
16 |
+
- type: evaluate-metric/accuracy
|
17 |
+
value: '0.7'
|
18 |
+
name: Accuracy Bezeichnung
|
19 |
+
- type: evaluate-metric/precision
|
20 |
+
value: '0.5'
|
21 |
+
name: Precision Bezeichnung
|
22 |
+
- type: evaluate-metric/recall
|
23 |
+
value: '0.61'
|
24 |
+
name: Recall Bezeichnung
|
25 |
+
- type: evaluate-metric/f1
|
26 |
+
value: '0.58'
|
27 |
+
name: F1 Bezeichnung
|
28 |
+
- type: evaluate-metric/accuracy
|
29 |
+
value: '0.92'
|
30 |
+
name: Accuracy Thema
|
31 |
+
- type: evaluate-metric/precision
|
32 |
+
value: '0.93'
|
33 |
+
name: Precision Thema
|
34 |
+
- type: evaluate-metric/recall
|
35 |
+
value: '0.91'
|
36 |
+
name: Recall Thema
|
37 |
+
- type: evaluate-metric/f1
|
38 |
+
value: '0.9'
|
39 |
+
name: F1 Thema
|
40 |
---
|
41 |
|
42 |
+
# Model Card for Musterdatenkatalog Classifier
|
43 |
|
44 |
<!-- Provide a quick summary of what the model is/does. -->
|
45 |
|
46 |
+
[More Information Needed]
|
47 |
|
48 |
# Model Details
|
49 |
|
|
|
70 |
|
71 |
# Direct Use
|
72 |
|
73 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
74 |
|
75 |
## Get Started with Sentence Transformers
|
76 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
154 |
|
155 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
156 |
|
157 |
+
You can find all information about the training data [here](https://huggingface.co/datasets/and-effect/mdk_gov_data_titles_clf)
|
158 |
|
159 |
## Training Procedure [optional]
|
160 |
|
|
|
164 |
|
165 |
[More Information Needed]
|
166 |
|
167 |
+
## Training Parameter
|
168 |
+
The model was trained with the parameters:
|
169 |
+
|
170 |
+
**DataLoader**:
|
171 |
+
`torch.utils.data.dataloader.DataLoader`
|
172 |
+
|
173 |
+
**Loss**:
|
174 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
175 |
+
|
176 |
+
Hyperparameter:
|
177 |
+
```
|
178 |
+
{
|
179 |
+
"epochs": [More Information Needed],
|
180 |
+
"evaluation_steps": 0,
|
181 |
+
"evaluator": NoneType,
|
182 |
+
"max_grad_norm": 1,
|
183 |
+
"optimizer_class": <class 'torch.optim.adamw.AdamW'>,
|
184 |
+
"optimizer_params": {'learning rate': 2e-05},
|
185 |
+
"scheduler": WarmupLinear,
|
186 |
+
"steps_per_epoch": null,
|
187 |
+
"warmup_steps": 100,
|
188 |
+
"weight_decay":0.01
|
189 |
+
}
|
190 |
+
```
|
191 |
+
|
192 |
+
|
193 |
### Speeds, Sizes, Times
|
194 |
|
195 |
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|