File size: 1,906 Bytes
44b7488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a678dd
44b7488
 
 
5a678dd
44b7488
 
 
5a678dd
44b7488
5a678dd
44b7488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
model-index:
- name: get_python
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# get_python

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5718

## Model description

This model can convert a given pseudo-code or algorithm to Python source code.   

## Intended uses & limitations

This model can be used by reasearchers, students and developers who are struggling to convert algorithms to code. 

## Training and evaluation data

The model was trained using ananyarn/Algorithm_and_Python_Source_Code. 

<!--## Training procedure-->
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 250

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8326        | 0.09  | 50   | 0.7046          |
| 0.6404        | 0.18  | 100  | 0.6080          |
| 0.5771        | 0.27  | 150  | 0.5701          |
| 0.5637        | 0.36  | 200  | 0.5662          |
| 0.552         | 0.44  | 250  | 0.5718          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.1