--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-qqp results: [] --- # distilbert-base-uncased-finetuned-qqp This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6417 - Accuracy: 0.7843 - F1: 0.8525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 268 | 0.5278 | 0.7613 | 0.8458 | | 0.4706 | 2.0 | 536 | 0.5574 | 0.7766 | 0.8530 | | 0.4706 | 3.0 | 804 | 0.6417 | 0.7843 | 0.8525 | | 0.2101 | 4.0 | 1072 | 0.7920 | 0.7776 | 0.8466 | | 0.2101 | 5.0 | 1340 | 0.8597 | 0.7843 | 0.8536 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2