File size: 1,547 Bytes
95d3dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from unsloth import FastLanguageModel
from transformers import AutoTokenizer
import torch

class EndpointHandler:
    def __init__(self, path=""):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
        self.model, _ = FastLanguageModel.from_pretrained(
            model_name=path,
            max_seq_length=2048,
            dtype=torch.float16,
            load_in_4bit=True,
        )
        self.model.to(self.device)
        self.model.eval()

    def __call__(self, data):
        prompt = data.get("inputs", "")
        if not prompt:
            return {"error": "Missing 'inputs' in request payload."}

        generation_params = {
            "max_new_tokens": data.get("max_new_tokens", 128),
            "temperature": data.get("temperature", 0.7),
            "top_p": data.get("top_p", 0.9),
            "top_k": data.get("top_k", 50),
            "do_sample": data.get("do_sample", True),
            "repetition_penalty": data.get("repetition_penalty", 1.1),
        }

        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)

        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                **generation_params
            )

        generated_text = self.tokenizer.decode(
            outputs[0],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )

        return {"generated_text": generated_text}