|
import PIL |
|
import PIL.Image |
|
import dlib |
|
import face_alignment |
|
import numpy as np |
|
import scipy |
|
import scipy.ndimage |
|
import skimage.io as io |
|
import torch |
|
from PIL import Image |
|
from scipy.ndimage import gaussian_filter1d |
|
from tqdm import tqdm |
|
|
|
|
|
def paste_image(inverse_transform, img, orig_image): |
|
pasted_image = orig_image.copy().convert('RGBA') |
|
projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR) |
|
pasted_image.paste(projected, (0, 0), mask=projected) |
|
return pasted_image |
|
|
|
def get_landmark(filepath, predictor, detector=None, fa=None): |
|
"""get landmark with dlib |
|
:return: np.array shape=(68, 2) |
|
""" |
|
if fa is not None: |
|
image = io.imread(filepath) |
|
lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True) |
|
if len(lms) == 0: |
|
return None |
|
return lms[0] |
|
|
|
if detector is None: |
|
detector = dlib.get_frontal_face_detector() |
|
if isinstance(filepath, PIL.Image.Image): |
|
img = np.array(filepath) |
|
else: |
|
img = dlib.load_rgb_image(filepath) |
|
dets = detector(img) |
|
|
|
for k, d in enumerate(dets): |
|
shape = predictor(img, d) |
|
break |
|
else: |
|
return None |
|
t = list(shape.parts()) |
|
a = [] |
|
for tt in t: |
|
a.append([tt.x, tt.y]) |
|
lm = np.array(a) |
|
return lm |
|
|
|
|
|
def align_face(filepath_or_image, predictor, output_size, detector=None, |
|
enable_padding=False, scale=1.0): |
|
""" |
|
:param filepath: str |
|
:return: PIL Image |
|
""" |
|
|
|
c, x, y = compute_transform(filepath_or_image, predictor, detector=detector, |
|
scale=scale) |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding) |
|
|
|
|
|
return img |
|
|
|
|
|
def crop_image(filepath, output_size, quad, enable_padding=False): |
|
x = (quad[3] - quad[1]) / 2 |
|
qsize = np.hypot(*x) * 2 |
|
|
|
if isinstance(filepath, PIL.Image.Image): |
|
img = filepath |
|
else: |
|
img = PIL.Image.open(filepath) |
|
transform_size = output_size |
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), |
|
min(crop[3] + border, img.size[1])) |
|
if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]): |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), |
|
int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), |
|
max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), |
|
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') |
|
quad += pad[:2] |
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
return img |
|
|
|
def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None): |
|
|
|
|
|
|
|
lm_chin = lm[0: 17] |
|
lm_eyebrow_left = lm[17: 22] |
|
lm_eyebrow_right = lm[22: 27] |
|
lm_nose = lm[27: 31] |
|
lm_nostrils = lm[31: 36] |
|
lm_eye_left = lm[36: 42] |
|
lm_eye_right = lm[42: 48] |
|
lm_mouth_outer = lm[48: 60] |
|
lm_mouth_inner = lm[60: 68] |
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
|
|
x *= scale |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
return c, x, y |
|
|
|
|
|
def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None): |
|
if use_fa: |
|
if fa == None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True, device=device) |
|
predictor = None |
|
detector = None |
|
else: |
|
fa = None |
|
predictor = None |
|
detector = None |
|
|
|
|
|
|
|
cs, xs, ys = [], [], [] |
|
for lm, pil in tqdm(files): |
|
c, x, y = compute_transform(lm, predictor, detector=detector, |
|
scale=scale, fa=fa) |
|
cs.append(c) |
|
xs.append(x) |
|
ys.append(y) |
|
|
|
cs = np.stack(cs) |
|
xs = np.stack(xs) |
|
ys = np.stack(ys) |
|
if center_sigma != 0: |
|
cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0) |
|
|
|
if xy_sigma != 0: |
|
xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0) |
|
ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0) |
|
|
|
quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1) |
|
quads = list(quads) |
|
|
|
crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads) |
|
|
|
return crops, orig_images, quads |
|
|
|
|
|
def crop_faces_by_quads(IMAGE_SIZE, files, quads): |
|
orig_images = [] |
|
crops = [] |
|
for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)): |
|
crop = crop_image(path, IMAGE_SIZE, quad.copy()) |
|
orig_image = path |
|
orig_images.append(orig_image) |
|
crops.append(crop) |
|
return crops, orig_images |
|
|
|
|
|
def calc_alignment_coefficients(pa, pb): |
|
matrix = [] |
|
for p1, p2 in zip(pa, pb): |
|
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) |
|
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) |
|
|
|
a = np.matrix(matrix, dtype=float) |
|
b = np.array(pb).reshape(8) |
|
|
|
res = np.dot(np.linalg.inv(a.T * a) * a.T, b) |
|
return np.array(res).reshape(8) |