|
import torch |
|
from torch import nn |
|
|
|
from einops import rearrange |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
|
|
class GELU(nn.Module): |
|
def __init__(self): |
|
super(GELU, self).__init__() |
|
def forward(self, x): |
|
return 0.5*x*(1+F.tanh(np.sqrt(2/np.pi)*(x+0.044715*torch.pow(x,3)))) |
|
|
|
|
|
|
|
def pair(t): |
|
return t if isinstance(t, tuple) else (t, t) |
|
|
|
|
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
def forward(self, x, **kwargs): |
|
return self.fn(self.norm(x), **kwargs) |
|
|
|
class DualPreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.normx = nn.LayerNorm(dim) |
|
self.normy = nn.LayerNorm(dim) |
|
self.fn = fn |
|
def forward(self, x, y, **kwargs): |
|
return self.fn(self.normx(x), self.normy(y), **kwargs) |
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout = 0.): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
project_out = not (heads == 1 and dim_head == dim) |
|
|
|
self.heads = heads |
|
self.scale = dim_head ** -0.5 |
|
|
|
self.attend = nn.Softmax(dim = -1) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias = False) |
|
self.to_k = nn.Linear(dim, inner_dim, bias = False) |
|
self.to_v = nn.Linear(dim, inner_dim, bias = False) |
|
|
|
|
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) if project_out else nn.Identity() |
|
|
|
def forward(self, x, y): |
|
|
|
q = rearrange(self.to_q(x), 'b n (h d) -> b h n d', h = self.heads) |
|
k = rearrange(self.to_k(x), 'b n (h d) -> b h n d', h = self.heads) |
|
v = rearrange(self.to_v(y), 'b n (h d) -> b h n d', h = self.heads) |
|
|
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale |
|
|
|
attn = self.attend(dots) |
|
|
|
out = torch.matmul(attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
return self.to_out(out) |
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
DualPreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) |
|
])) |
|
|
|
|
|
def forward(self, x, y): |
|
bs,c,h,w = x.size() |
|
|
|
|
|
x = x.view(bs,c,-1).permute(0,2,1) |
|
y = y.view(bs,c,-1).permute(0,2,1) |
|
|
|
for attn, ff in self.layers: |
|
x = attn(x, y) + x |
|
x = ff(x) + x |
|
|
|
x = x.view(bs,h,w,c).permute(0,3,1,2) |
|
return x |
|
|
|
class RETURNX(nn.Module): |
|
def __init__(self,): |
|
super().__init__() |
|
|
|
def forward(self, x, y): |
|
return x |