|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from models.base_blocks import ResBlock, StyleConv, ToRGB |
|
|
|
|
|
class ENet(nn.Module): |
|
def __init__( |
|
self, |
|
num_style_feat=512, |
|
lnet=None, |
|
concat=False |
|
): |
|
super(ENet, self).__init__() |
|
|
|
self.low_res = lnet |
|
for param in self.low_res.parameters(): |
|
param.requires_grad = False |
|
|
|
channel_multiplier, narrow = 2, 1 |
|
channels = { |
|
'4': int(512 * narrow), |
|
'8': int(512 * narrow), |
|
'16': int(512 * narrow), |
|
'32': int(512 * narrow), |
|
'64': int(256 * channel_multiplier * narrow), |
|
'128': int(128 * channel_multiplier * narrow), |
|
'256': int(64 * channel_multiplier * narrow), |
|
'512': int(32 * channel_multiplier * narrow), |
|
'1024': int(16 * channel_multiplier * narrow) |
|
} |
|
|
|
self.log_size = 8 |
|
first_out_size = 128 |
|
self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1) |
|
|
|
|
|
in_channels = channels[f'{first_out_size}'] |
|
self.conv_body_down = nn.ModuleList() |
|
for i in range(8, 2, -1): |
|
out_channels = channels[f'{2**(i - 1)}'] |
|
self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down')) |
|
in_channels = out_channels |
|
|
|
self.num_style_feat = num_style_feat |
|
linear_out_channel = num_style_feat |
|
self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel) |
|
self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1) |
|
|
|
self.style_convs = nn.ModuleList() |
|
self.to_rgbs = nn.ModuleList() |
|
self.noises = nn.Module() |
|
|
|
self.concat = concat |
|
if concat: |
|
in_channels = 3 + 32 |
|
else: |
|
in_channels = 3 |
|
|
|
for i in range(7, 9): |
|
out_channels = channels[f'{2**i}'] |
|
self.style_convs.append( |
|
StyleConv( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode='upsample')) |
|
self.style_convs.append( |
|
StyleConv( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
num_style_feat=num_style_feat, |
|
demodulate=True, |
|
sample_mode=None)) |
|
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True)) |
|
in_channels = out_channels |
|
|
|
def forward(self, audio_sequences, face_sequences, gt_sequences): |
|
B = audio_sequences.size(0) |
|
input_dim_size = len(face_sequences.size()) |
|
inp, ref = torch.split(face_sequences,3,dim=1) |
|
|
|
if input_dim_size > 4: |
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) |
|
inp = torch.cat([inp[:, :, i] for i in range(inp.size(2))], dim=0) |
|
ref = torch.cat([ref[:, :, i] for i in range(ref.size(2))], dim=0) |
|
gt_sequences = torch.cat([gt_sequences[:, :, i] for i in range(gt_sequences.size(2))], dim=0) |
|
|
|
|
|
feat = F.leaky_relu_(self.conv_body_first(F.interpolate(ref, size=(256,256), mode='bilinear')), negative_slope=0.2) |
|
for i in range(self.log_size - 2): |
|
feat = self.conv_body_down[i](feat) |
|
feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2) |
|
|
|
|
|
style_code = self.final_linear(feat.reshape(feat.size(0), -1)) |
|
style_code = style_code.reshape(style_code.size(0), -1, self.num_style_feat) |
|
|
|
LNet_input = torch.cat([inp, gt_sequences], dim=1) |
|
LNet_input = F.interpolate(LNet_input, size=(96,96), mode='bilinear') |
|
|
|
if self.concat: |
|
low_res_img, low_res_feat = self.low_res(audio_sequences, LNet_input) |
|
low_res_img.detach() |
|
low_res_feat.detach() |
|
out = torch.cat([low_res_img, low_res_feat], dim=1) |
|
|
|
else: |
|
low_res_img = self.low_res(audio_sequences, LNet_input) |
|
low_res_img.detach() |
|
|
|
out = low_res_img |
|
|
|
p2d = (2,2,2,2) |
|
out = F.pad(out, p2d, "reflect", 0) |
|
skip = out |
|
|
|
for conv1, conv2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], self.to_rgbs): |
|
out = conv1(out, style_code) |
|
out = conv2(out, style_code) |
|
skip = to_rgb(out, style_code, skip) |
|
_outputs = skip |
|
|
|
|
|
_outputs = _outputs[:,:,8:-8,8:-8] |
|
|
|
if input_dim_size > 4: |
|
_outputs = torch.split(_outputs, B, dim=0) |
|
outputs = torch.stack(_outputs, dim=2) |
|
low_res_img = F.interpolate(low_res_img, outputs.size()[3:]) |
|
low_res_img = torch.split(low_res_img, B, dim=0) |
|
low_res_img = torch.stack(low_res_img, dim=2) |
|
else: |
|
outputs = _outputs |
|
return outputs, low_res_img |