Create test_infer_onnx.py (#6)
Browse files- Create test_infer_onnx.py (290f357c21d3fe2a506fcccd008d4df6f47d7b05)
Co-authored-by: fangyuan wang <[email protected]>
- test_infer_onnx.py +154 -0
test_infer_onnx.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import onnxruntime
|
| 4 |
+
import numpy as np
|
| 5 |
+
import argparse
|
| 6 |
+
from utils import (
|
| 7 |
+
LoadImages,
|
| 8 |
+
non_max_suppression,
|
| 9 |
+
plot_images,
|
| 10 |
+
output_to_target,
|
| 11 |
+
)
|
| 12 |
+
import sys
|
| 13 |
+
import pathlib
|
| 14 |
+
CURRENT_DIR = pathlib.Path(__file__).parent
|
| 15 |
+
sys.path.append(str(CURRENT_DIR))
|
| 16 |
+
from optimum.amd.ryzenai import RyzenAIModelForObjectDetection
|
| 17 |
+
|
| 18 |
+
def preprocess(img):
|
| 19 |
+
img = torch.from_numpy(img)
|
| 20 |
+
img = img.float() # uint8 to fp16/32
|
| 21 |
+
img /= 255 # 0 - 255 to 0.0 - 1.0
|
| 22 |
+
return img
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class DFL(nn.Module):
|
| 26 |
+
# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
| 27 |
+
def __init__(self, c1=16):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
| 30 |
+
x = torch.arange(c1, dtype=torch.float)
|
| 31 |
+
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
| 32 |
+
self.c1 = c1
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
b, c, a = x.shape # batch, channels, anchors
|
| 36 |
+
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(
|
| 37 |
+
b, 4, a
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
|
| 42 |
+
"""Transform distance(ltrb) to box(xywh or xyxy)."""
|
| 43 |
+
lt, rb = torch.split(distance, 2, dim)
|
| 44 |
+
x1y1 = anchor_points - lt
|
| 45 |
+
x2y2 = anchor_points + rb
|
| 46 |
+
if xywh:
|
| 47 |
+
c_xy = (x1y1 + x2y2) / 2
|
| 48 |
+
wh = x2y2 - x1y1
|
| 49 |
+
return torch.cat((c_xy, wh), dim) # xywh bbox
|
| 50 |
+
return torch.cat((x1y1, x2y2), dim) # xyxy bbox
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def post_process(x):
|
| 54 |
+
dfl = DFL(16)
|
| 55 |
+
anchors = torch.tensor(
|
| 56 |
+
np.load(
|
| 57 |
+
"./anchors.npy",
|
| 58 |
+
allow_pickle=True,
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
strides = torch.tensor(
|
| 62 |
+
np.load(
|
| 63 |
+
"./strides.npy",
|
| 64 |
+
allow_pickle=True,
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
box, cls = torch.cat([xi.view(x[0].shape[0], 144, -1) for xi in x], 2).split(
|
| 68 |
+
(16 * 4, 80), 1
|
| 69 |
+
)
|
| 70 |
+
dbox = dist2bbox(dfl(box), anchors.unsqueeze(0), xywh=True, dim=1) * strides
|
| 71 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
| 72 |
+
return y, x
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def make_parser():
|
| 76 |
+
parser = argparse.ArgumentParser("onnxruntime inference sample")
|
| 77 |
+
parser.add_argument(
|
| 78 |
+
"-m",
|
| 79 |
+
"--onnx_model",
|
| 80 |
+
type=str,
|
| 81 |
+
default="./yolov8m.onnx",
|
| 82 |
+
help="input your onnx model.",
|
| 83 |
+
)
|
| 84 |
+
parser.add_argument(
|
| 85 |
+
"-i",
|
| 86 |
+
"--image_path",
|
| 87 |
+
type=str,
|
| 88 |
+
default='./demo.jpg',
|
| 89 |
+
help="path to your input image.",
|
| 90 |
+
)
|
| 91 |
+
parser.add_argument(
|
| 92 |
+
"-o",
|
| 93 |
+
"--output_path",
|
| 94 |
+
type=str,
|
| 95 |
+
default='./demo_infer.jpg',
|
| 96 |
+
help="path to your output directory.",
|
| 97 |
+
)
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
"--ipu", action='store_true', help='flag for ryzen ai'
|
| 100 |
+
)
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--provider_config", default='', type=str, help='provider config for ryzen ai'
|
| 103 |
+
)
|
| 104 |
+
return parser
|
| 105 |
+
|
| 106 |
+
classnames = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
| 107 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
| 108 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
| 109 |
+
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
| 110 |
+
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
| 111 |
+
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
| 112 |
+
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 113 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
| 114 |
+
'hair drier', 'toothbrush']
|
| 115 |
+
names = {k: classnames[k] for k in range(80)}
|
| 116 |
+
imgsz = [640, 640]
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if __name__ == '__main__':
|
| 120 |
+
args = make_parser().parse_args()
|
| 121 |
+
source = args.image_path
|
| 122 |
+
dataset = LoadImages(
|
| 123 |
+
source, imgsz=imgsz, stride=32, auto=False, transforms=None, vid_stride=1
|
| 124 |
+
)
|
| 125 |
+
onnx_weight = args.onnx_model
|
| 126 |
+
if args.ipu:
|
| 127 |
+
onnx_model = RyzenAIModelForObjectDetection.from_pretrained(".\\", vaip_config=args.provider_config)
|
| 128 |
+
# providers = ["VitisAIExecutionProvider"]
|
| 129 |
+
# provider_options = [{"config_file": args.provider_config}]
|
| 130 |
+
# onnx_model = onnxruntime.InferenceSession(onnx_weight, providers=providers, provider_options=provider_options)
|
| 131 |
+
else:
|
| 132 |
+
onnx_model = onnxruntime.InferenceSession(onnx_weight)
|
| 133 |
+
for batch in dataset:
|
| 134 |
+
path, im, im0s, vid_cap, s = batch
|
| 135 |
+
im = preprocess(im)
|
| 136 |
+
if len(im.shape) == 3:
|
| 137 |
+
im = im[None]
|
| 138 |
+
# outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: im.cpu().numpy()})
|
| 139 |
+
# outputs = [torch.tensor(item) for item in outputs]
|
| 140 |
+
# outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: im.permute(0, 2, 3, 1).cpu().numpy()})
|
| 141 |
+
# outputs = [torch.tensor(item).permute(0, 3, 1, 2) for item in outputs]
|
| 142 |
+
outputs = onnx_model(im.permute(0, 2, 3, 1))
|
| 143 |
+
outputs = [outputs[0].permute(0, 3, 1, 2), outputs[1].permute(0, 3, 1, 2), outputs[2].permute(0, 3, 1, 2)]
|
| 144 |
+
preds = post_process(outputs)
|
| 145 |
+
preds = non_max_suppression(
|
| 146 |
+
preds, 0.25, 0.7, agnostic=False, max_det=300, classes=None
|
| 147 |
+
)
|
| 148 |
+
plot_images(
|
| 149 |
+
im,
|
| 150 |
+
*output_to_target(preds, max_det=15),
|
| 151 |
+
source,
|
| 152 |
+
fname=args.output_path,
|
| 153 |
+
names=names,
|
| 154 |
+
)
|